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Abstract

In this paper we give a convergence theorem for non C0 nonconforming finite element to
solve the elliptic fourth order singular perturbation problem. Two such kind of elements, a
nine parameter triangular element and a twelve parameter rectangular element both with
double set parameters, are presented. The convergence and numerical results of the two
elements are given.
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1. Introduction

We consider the following elliptic singular perturbation problem [1]:

{
ε2∆2u − ∆u = f in Ω
u = ∂u

∂n
= 0 on ∂Ω

(1)

where f ∈ L2(Ω), ∆ = ∂2

∂x2 + ∂2

∂y2 is the Laplace operator, ∆2 = ( ∂2

∂x2 + ∂2

∂y2 )2, Ω ⊂ R2 is a

bounded polygonal domain, ∂Ω is the boundary of Ω, ∂
∂n

denotes the outer normal derivative
on ∂Ω, and ε is a real parameter such that 0 < ε ≤ 1. When ε tends to zero, (1) formally
degenerates to Poisson’s equation. Hence, (1) is a plate model which may degenerate toward
an elastic membrane problem.

A conforming plate element should have C1 continuity which makes the element compli-
cated, so nonconforming plate elements are widely used. For convergence criterion there are
Patch-Test[10] which is convenient to use for engineers, and Generalized Patch-Test[9] which is
a sufficient and necessary condition. According to Generalized Patch-Test, Professor Shi pre-
sented F-E-M-Test[11] which is easier to use. Many successful nonconforming plate elements
[5,7,3,12,13,14] have been presented, but not all of them are convergent for (1) uniformly respect
to ε.

It is proved[1] that the non-C0 nonconforming plate element— Morley’s element [2],—is
not convergent for (1) when ε → 0. In [1] a C0 nonconforming plate element is presented,
which is convergent for (1) uniformly in ε. In this paper we study the convergence of non-
C0 nonconforming plate elements for (1). In section 2 we give a general convergence theorem
for non-C0 nonconforming plate elements solving (1). In section 3 the double set parameter
method to construct nonconforming finite element is presented. In section 4 a triangular and a
rectangular non-C0 nonconforming plate elements [3][4] are presented and their convergence for
(1) uniformly in ε is proved. In section 5 some numerical results are given.
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2. A Convergence Theorem

The inner product on L2(Ω) will be denoted by (·, ·), Hm(Ω) is the usual Sobolev space of
functions with partial derivatives of order less than or equal to m in L2(Ω), and the correspond-
ing norm by ‖ · ‖m,Ω. The seminorm derived from the partial derivatives of order equal to m
is denoted by | · |m,Ω. The space Hm

0 (Ω) is the closure in Hm(Ω) of C∞
0 (Ω). Alternatively, we

have

H1
0 (Ω) = {v ∈ H1(Ω); v|∂Ω = 0}, H2

0(Ω) = {v ∈ H2(Ω); v =
∂v

∂n
= 0, on∂Ω}

Let Du be the gradient of u and D2u = ( ∂2u
∂xi∂xj

)2×2 be the 2× 2 tensor of the second order

partial derivatives.
The weak form of (1) is : find u ∈ H2

0 (Ω) such that

ε2a(u, v) + b(u, v) = (f, v) ∀v ∈ H2
0 (Ω) (2)

where

a(u, v) =

∫

Ω

D2u : D2vdx, b(u, v) =

∫

Ω

Du · Dvdx. (3)

From Green’s formula[5], it is easy to see that
∫

Ω

D2u : D2vdx =

∫

Ω

4u4vdx ∀u, v ∈ H2
0 (Ω) (4)

However this identity does not hold on the noncomforming finite element spaces. We use
the form (3) like in [1].

Assume that {Th} is a quasi-uniform [5] and shape-regular[5] family of triangulations of Ω,
here the discretization parameter h is a characteristic diameter of the elements in Th. We use
Vh to denote the finite element space which is piecewise polynomial space and satisfies the
boundary conditions of (1) in some way. Then the finite element approximation of (2) is: find
uh ∈ Vh such that

ε2ah(uh, vh) + bh(uh, vh) = (f, vh) ∀vh ∈ Vh (5)

where

ah(u, v) =
∑

K∈Th

∫

K

D2u : D2vdx, bh(u, v) =
∑

K∈Th

∫

K

Du · Dvdx.

We define a seminorm ||| · |||ε,h by [1]

|||w|||2ε,h = ε2ah(w, w) + bh(w, w) = ε2|w|22,h + |w|21,h (6)

where | · |2i,h =
∑

K | · |2i,K , i = 1, 2.
The interpolation operator derived by Vh is denoted by Πh. Let ΠK = Πh|K for K ∈ Th.

Pm(K) is the polynomial space of degree less than or equal to m on K. Let F denote any edge
of an element.
Theorem 1. Let u and uh be solutions of (2)and (5) respectively. If Vh satisfies the following
conditions:
(c1) ||| · |||ε,h is a norm on Vh.
(c2) ∀K ∈ Th, ∀v ∈ P2(K), ΠKv = v.
(c3) ∀vh ∈ Vh, vh is continuous at the vertics of elements and is zero at the vertics on ∂Ω.
(c4) ∀vh ∈ Vh,

∫
F

vhds is continuous across the element edge F and is zero on F ⊂ ∂Ω.

(c5) ∀vh ∈ Vh,
∫

F
∂vh

∂n
ds is continuous across the element edge F and is zero on F ⊂ ∂Ω.

Then
|||u − uh|||ε,h ≤ ch(ε|u|3,Ω + |u|2,Ω + ‖f‖0,Ω) (7)


