Journal of Computational Mathematics, Vol.23, No.2, 2005, 185–198.

NON C⁰ NONCONFORMING ELEMENTS FOR ELLIPTIC FOURTH ORDER SINGULAR PERTURBATION PROBLEM *1)

Shao-chun Chen Yong-cheng Zhao Dong-yang Shi (Department of Mathematics, Zhengzhou University, Zhengzhou 450052, China)

Abstract

In this paper we give a convergence theorem for non C^0 nonconforming finite element to solve the elliptic fourth order singular perturbation problem. Two such kind of elements, a nine parameter triangular element and a twelve parameter rectangular element both with double set parameters, are presented. The convergence and numerical results of the two elements are given.

Mathematics subject classification: 65N12, 65N30. Key words: Singular perturbation problem, Nonconforming element, Double set parameter method.

1. Introduction

We consider the following elliptic singular perturbation problem ^[1]:

$$\begin{cases} \varepsilon^2 \Delta^2 u - \Delta u = f & \text{in } \Omega\\ u = \frac{\partial u}{\partial n} = 0 & \text{on } \partial \Omega \end{cases}$$
(1)

where $f \in L^2(\Omega), \Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ is the Laplace operator, $\Delta^2 = (\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2})^2$, $\Omega \subset R^2$ is a bounded polygonal domain, $\partial\Omega$ is the boundary of Ω , $\frac{\partial}{\partial n}$ denotes the outer normal derivative on $\partial\Omega$, and ε is a real parameter such that $0 < \varepsilon \leq 1$. When ε tends to zero, (1) formally degenerates to Poisson's equation. Hence, (1) is a plate model which may degenerate toward an elastic membrane problem.

A conforming plate element should have C^1 continuity which makes the element complicated, so nonconforming plate elements are widely used. For convergence criterion there are Patch-Test^[10] which is convenient to use for engineers, and Generalized Patch-Test^[9] which is a sufficient and necessary condition. According to Generalized Patch-Test, Professor Shi presented F-E-M-Test^[11] which is easier to use. Many successful nonconforming plate elements [^{5,7,3,12,13,14]} have been presented, but not all of them are convergent for (1) uniformly respect to ε .

It is proved^[1] that the non- C^0 nonconforming plate element— Morley's element ^[2],—is not convergent for (1) when $\varepsilon \to 0$. In [1] a C^0 nonconforming plate element is presented, which is convergent for (1) uniformly in ε . In this paper we study the convergence of non- C^0 nonconforming plate elements for (1). In section 2 we give a general convergence theorem for non- C^0 nonconforming plate elements solving (1). In section 3 the double set parameter method to construct nonconforming finite element is presented. In section 4 a triangular and a rectangular non- C^0 nonconforming plate elements ^{[3][4]} are presented and their convergence for (1) uniformly in ε is proved. In section 5 some numerical results are given.

^{*} August 14, 2003; final revised March 16, 2004.

¹⁾ This work was supported by NFSC (10471133) and (10590353).

2. A Convergence Theorem

The inner product on $L^2(\Omega)$ will be denoted by (\cdot, \cdot) , $H^m(\Omega)$ is the usual Sobolev space of functions with partial derivatives of order less than or equal to m in $L^2(\Omega)$, and the corresponding norm by $\|\cdot\|_{m,\Omega}$. The seminorm derived from the partial derivatives of order equal to m is denoted by $|\cdot|_{m,\Omega}$. The space $H_0^m(\Omega)$ is the closure in $H^m(\Omega)$ of $C_0^\infty(\Omega)$. Alternatively, we have

$$H_0^1(\Omega) = \{ v \in H^1(\Omega); v |_{\partial\Omega} = 0 \}, H_0^2(\Omega) = \{ v \in H^2(\Omega); v = \frac{\partial v}{\partial n} = 0, on\partial\Omega \}$$

Let Du be the gradient of u and $D^2 u = (\frac{\partial^2 u}{\partial x_i \partial x_j})_{2 \times 2}$ be the 2×2 tensor of the second order partial derivatives.

The weak form of (1) is : find $u \in H^2_0(\Omega)$ such that

$$\varepsilon^2 a(u,v) + b(u,v) = (f,v) \qquad \forall v \in H^2_0(\Omega)$$
(2)

where

$$a(u,v) = \int_{\Omega} D^2 u : D^2 v dx, \qquad b(u,v) = \int_{\Omega} Du \cdot Dv dx.$$
(3)

From Green's formula^[5], it is easy to see that

$$\int_{\Omega} D^2 u : D^2 v dx = \int_{\Omega} \Delta u \Delta v dx \qquad \forall u, v \in H^2_0(\Omega)$$
(4)

However this identity does not hold on the noncomforming finite element spaces. We use the form (3) like in [1].

Assume that $\{T_h\}$ is a quasi-uniform ^[5] and shape-regular^[5] family of triangulations of Ω , here the discretization parameter h is a characteristic diameter of the elements in T_h . We use V_h to denote the finite element space which is piecewise polynomial space and satisfies the boundary conditions of (1) in some way. Then the finite element approximation of (2) is: find $u_h \in V_h$ such that

$$\varepsilon^2 a_h(u_h, v_h) + b_h(u_h, v_h) = (f, v_h) \qquad \forall v_h \in V_h$$
(5)

where

$$a_h(u,v) = \sum_{K \in T_h} \int_K D^2 u : D^2 v dx, \qquad b_h(u,v) = \sum_{K \in T_h} \int_K D u \cdot D v dx.$$

We define a seminorm $||| \cdot |||_{\varepsilon,h}$ by ^[1]

$$|||w|||_{\varepsilon,h}^2 = \varepsilon^2 a_h(w,w) + b_h(w,w) = \varepsilon^2 |w|_{2,h}^2 + |w|_{1,h}^2$$
(6)

where $|\cdot|_{i,h}^2 = \sum_{K} |\cdot|_{i,K}^2, i = 1, 2.$

The interpolation operator derived by V_h is denoted by Π_h . Let $\Pi_K = \Pi_h|_K$ for $K \in \mathcal{T}_h$. $P_m(K)$ is the polynomial space of degree less than or equal to m on K. Let F denote any edge of an element.

Theorem 1. Let u and u_h be solutions of (2) and (5) respectively. If V_h satisfies the following conditions:

(c1) $||| \cdot |||_{\varepsilon,h}$ is a norm on V_h .

 $(c2) \ \forall K \in T_h, \forall v \in P_2(K), \Pi_K v = v.$

(c3) $\forall v_h \in V_h, v_h$ is continuous at the vertics of elements and is zero at the vertics on $\partial \Omega$.

(c4) $\forall v_h \in V_h, \int_F v_h ds$ is continuous across the element edge F and is zero on $F \subset \partial \Omega$.

(c5) $\forall v_h \in V_h, \int_F \frac{\partial v_h}{\partial n} ds$ is continuous across the element edge F and is zero on $F \subset \partial \Omega$. Then

$$|||u - u_h|||_{\varepsilon,h} \le ch(\varepsilon |u|_{3,\Omega} + |u|_{2,\Omega} + ||f||_{0,\Omega})$$
(7)