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Abstract

A derivative-free frame-based conjugate gradients algorithm is presented. Convergence
is shown for C1 functions, and this is verified in numerical trials. The algorithm is tested on
a variety of low dimensional problems, some of which are ill-conditioned, and is also tested
on problems of high dimension. Numerical results show that the algorithm is effective
on both classes of problems. The results are compared with those from a discrete quasi-
Newton method, showing that the conjugate gradients algorithm is competitive. The
algorithm exhibits the conjugate gradients speed-up on problems for which the Hessian at
the solution has repeated or clustered eigenvalues. The algorithm is easily parallelizable.
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1. Introduction

The linear conjugate gradient was developed by Hestenes and Stiefel [10], and extended
to the minimization of general functions by Fletcher and Reeves [6]. A description of con-
jugate gradients methods for minimising general functions can be found in [5, 6, 7, 8, 9, 12]
and elsewhere. In this paper we consider the application of conjugate gradients techniques to
unconstrained minimization of C1 functions in a derivative-free context. A method is described
which conforms to the frame-based template in [2], thereby guaranteeing convergence under
standard conditions. The problem may be formally stated as

min
x∈Rn

f(x),

where a local, but not necessarily a global minimizer is sought. Here we restrict attention to
objective functions f which are continuously differentiable, but do not assume that gradient in-
formation is available. Second order optimality conditions are not useable as second derivatives
may not exist. Consequently stationary points are accepted as solutions. The algorithm forms
an estimate of the gradient at each iterate, but does not rely on the accuracy of these esti-
mates to guarantee convergence. These gradient estimates are used to form conjugate gradients
search directions, and line searches are conducted along these directions. Hence the algorithm
mimics a conjugate gradients method when it can (that is to say, when its gradient estimates
happen to be accurate), which makes it more effective in practice. Convergence is guaranteed
by the frame-based nature of the algorithm, not the fact that it mimics a conjugate gradients
method. The theoretical convergence properties are unaffected by the accuracy of gradient
estimates, although inaccurate estimates will, in general, degrade the numerical performance of
the algorithm.
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The conjugate gradients method used is that of Polak and Ribière [12], and Polyak [13]
(hereafter PRP). Limited numerical comparisons between frame based PRP and Fletcher–
Reeves methods indicated that the former was more promising. This preference seems to be in
accord with the case when exact gradients are available [7]. The automatic reset property [14]
of the PRP method is also very desirable for higher dimensional problems.

The algorithm generates a sequence of iterates {x(k)}, where k is the iteration number. At
each iteration the function values at a set of points Φ(k) called a frame are calculated. Frames
are defined precisely in the following section, and a template for frame-based algorithms is given
in Section 3. Loosely speaking, the points in the frame surround x(k). The gradient at x(k)

is estimated using points from the frame Φ(k). This gradient estimate allows a derivative-free
conjugate search direction to be formed, as described in Section 4. A line search is conducted
along this search direction, yielding the next iterate. The process is repeated until an ade-
quate approximation to a stationary point is obtained. The choice of frames yields a second
order gradient estimate at each iterate. The line search uses parabolic interpolation to locate
an approximation to each line local minimum. On a quadratic these gradient estimates and
approximations to line local minima are exact, and so the algorithm exactly minimizes convex
quadratics in a finite time. A description of the line search is given in Section 5. Numerical
results and concluding remarks are presented in Sections 6 and 7.

2. Frames

A frame Φ is defined by a frame centre x, a frame size h > 0, and a positive basis V+. A
positive basis [4] (see also [18]) is a set of vectors V+ with the following two properties:

(i) every vector in Rn is a linear combination of the members of V+, where all coefficients of
the linear combination are non-negative; and

(ii) no proper subset of V+ satisfies (i).

A frame Φ(x, h,V+) around x is a set of points of the form Φ (x, h,V+) = {x+ hv : v ∈ V+} .
It is shown in [4] that positive bases (and hence also frames) have at least n + 1 and at most
2n members. Positive bases and frames containing 2n members are called maximal. Maximal
positive bases [4] are of the form V+ = {v1, v2, . . . , vn,−v1,−v2, . . . ,−vn} where v1, . . . , vn are
a basis for Rn. Herein we use vi = ei, where ei is the ith unit vector. This yields a frame
around a frame centre x(k) of the form:

Φ(k) = {x(k) + h(k)ei : ∀i = 1, . . . , n} ∪ {x(k) − h(k)ei : ∀i = 1, . . . , n}. (1)

Each such maximal frame contains enough information to form second order estimates of the
gradient at x(k), and also the diagonal entries of the Hessian at x(k). These second derivative
estimates are used to scale the decision variables at each reset.

Frames which are called quasi-minimal are of particular interest. These frames have the
property that no frame point is more than ε lower than the frame centre, where ε is a preselected
non-negative constant. The convergence theory [2] shows that any method conforming to it will
generate an infinite subsequence of quasi-minimal frames. The convergence theory also shows
that, under mild conditions, the cluster points of this subsequence of quasi-minimal frame
centres are stationary points of f .

At each iteration a positive constant ε(k) is chosen. The frame Φ(k) is called quasi-minimal
if and only if

f
(
x(k)

)
≤ f (x) + ε(k) ∀x ∈ Φ(k). (2)


