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Abstract

It is known that for a given matrix A of rank r, and a set D of positive diagonal
matrices, Supy cp ||(W%A)TW%||2 = (min; 04+ (AP))~!, in which (A®) is a submatrix of
A formed with r = (rank(A)) rows of A, such that (A®) has full row rank r. In many
practical applications this value is too large to be used.

In this paper we consider the case that both A and W (€ D) are fixed with W severely
stiff. We show that in this case the weighted pseudoinverse (W% A)TW% is close to a multi-
level constrained weighted pseudoinverse therefore ||(W%A)TW% ||2 is uniformly bounded.
We also prove that in this case the solution set the stiffly weighted least squares problem
is close to that of corresponding multi-level constrained least squares problem.
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1. Introduction

In this paper we are concerned with the stiffly weighted least squares (stifly WLS) problem

min |W# (Az — )], = min | D(4z — b)) M)

and related weighted pseudoinverse AJ{,V = (WzA)'Wz, where ||-|| = ||-||> denotes the Euclidean
vector norm or subordinate matrix norm, 4 € C™*" b € C™ are known coefficient matrix and
observation vector, respectively,

D = diag(dy,dz, -+, dm) = diag(wlé)wév T ,’11)7%1) = W% (2)

is the weight matrix. WLS problem Eq. (1) with extremely ill-conditioned weight matrix
W (in this case Bjorck [3] called W stiff weight matrix), where the scalar factors wy,- -, wp,
vary widely in size arise, e.g., in electronic network, certain classes of finite element problems,
interior-point method for constrained optimization (e.g., see [8, 15]), and for solving the equality
constrained least squares problem by the method of weighting [16, 1, 14].

In the case that W is severely stiff, it is not at all apparent that an accurate numerical
solution to Eq. (1) is possible, since ill-conditioning in W presumably means extreme sensitivity
to roundoff errors, because in standard numerical analysis, error bounds of the solutions to Eq.
(1) have a weighted condition number k(W2 A) = ||[W= A||||(W=A)T|| as a factor so that when
W becomes ill-conditioned the condition number would become unbounded.
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On the other hand, one can define a new condition number k = ||A||||AJ{,V|| If ||AI,V|| is
uniformly bounded, then s would be uniformly bounded.

Stewart [13] obtained an upper bound of scaled projections when A € R™*™ has full column
rank and weight matrices W range over a set D of positive diagonal matrices. Liu and Xu [10]
then proved that this upper bound for scaled projection is indeed the supremum. Wei [19],
Forsgren [6], Wei [20] respectively have obtained the supremum of weighted pseudoinverses
when weight matrices W range over D, or a set P of real symmetric diagonal dominant semi-
positive matrices. Forsgren [6] and Wei [20] have also extended the results to constrained
weighted pseudoinverses. For more detailed description on this topic, we refer to [21].

In practical applications, the supremum [19, 20)

1
Al —— =
e 14 = ) @

sometimes may be too large to be of practical usefulness. For instance, suppose

1 0
A= 6 0 5 WO = diag(wl,wl,wg),
01

where w; > w3 > 0 are arbitrary, and 0 < § < 1. Then
i tr=l
|Aw,ll =1 and sup [[Ay || = 5 > 1.
weD

This example rises a question: if the weight matrix W is given and is very ill-conditioned,
does exist an upper bound of ||AI,V|| which is of moderate size?

In this paper we will study the above question. Without loss of generality, we make the
following notation and assumptions for A and W.
Assumption 1.1. The matrices A and W in Eq. (1) satisfy the following conditions: ||A(3,:

N = (@i, ain, -+ -, ain)|| have the same order for i = 1,---,m, w; > wy > --- > wg > 0,
my + mso + --- +my =m, and we denote
A1 miy A1
A= : : , Cj = : , j=1,---k, (4)
Ak mg Aj

W = diag(wy Iy, wolnm,, -+ s wiln,),
(5)

0<ey; =221, for1<j<i<ksoe= max {e1;} <1
J 1<j<k
We also set
Py =1y, P;=1-ClCj, rank(Cj) =71, j=1,--,k. (6)

Vavasis and Ye [17] studied interior-point method for solving linear programming problem,
in which the matrices A and W basically satisfy Assumption 1.1.

The paper is organized as follows. In §2 we will derive several equivalent formulas of the
stiffly weighted pseudoinverse; in §3 we will derive the multi-level constrained pseudoinverse and
corresponding multi-level constrained least squares (MCLS) problem; in §4 we will prove that
the stiffly weighted pseudoinverse is indeed close to the multi-level constrained pseudoinverse
therefore is uniformly bounded; in §5 we will deduce upper bounds of difference of the solutions
between of the stifly WLS problem and the MCLS problem; finally in §6 we will conclude the
paper with some remarks.



