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Abstract

In this paper the least-squares mixed finite element is considered for solving second-
order elliptic problems in two dimensional domains. The primary solution u and the flux
o are approximated using finite element spaces consisting of piecewise polynomials of
degree k and r respectively. Based on interpolation operators and an auxiliary projection,
superconvergent H!'-error estimates of both the primary solution approximation wu; and
the flux approximation o are obtained under the standard quasi-uniform assumption on
finite element partition. The superconvergence indicates an accuracy of O(h"*?) for the
least-squares mixed finite element approximation if Raviart-Thomas or Brezzi-Douglas-
Fortin-Marini elements of order r are employed with optimal error estimate of O(h"T!).
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1. Introduction

We are concerned with approximate solutions for the representative second-order elliptic
boundary-value problem:

—div(Agradu) +cu = f in Q, (1.1)

v = 0 on T, (1.2)

where © C IR? is a open bounded domain with boundary I' and A is a positive definite matrix

of coefficients. Introducing the flux o = — Agradu, the problem may be recast as the first order
system

o+ Agradu = 0 in Q, (1.3)

divo +cu = f in Q, (1.4)

u = 0 on I. (1.5)

In many applications such as reservoir simulation, second-order elliptic equations are coupled
with other partial differential equations through the velocity terms. So, The mixed finite element
methods are usually used. The classical mixed method for (1.3)-(1.5) is based on the stationary
principle for a saddle-point problem and is subject to the inf-sup condition on the spaces for
u and o (see Brezzi [1]), This implies certain restrictions on the polynomial degree k and
r for the element bases defining approximations u; and o, respectively. In the least-squares
mixed (LSM) approach a least-squares residual minimization is introduced for the mixed system
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(1.3)-(1.5) of u and o. The finite element approximation yields a symmetric discrete system
for the solution u, € V; and o € Wy, where V, and W, are the respective approximation
subspaces which needn’t to be subject to the consistency requirement. In [16-18], Pehlivanov
et al. presented a least-squares mixed (LSM) finite elements method for second-order elliptic
problems. It have been proved that the LSM method is not subject to the LBB condition and
error estimates for various choices of approximation spaces have been obtained.

The objective of this paper is to investigate superconvergence phenomena for second-order
elliptic problems by using the LSM method. Such a study is important in applications to
mathematical modeling of fluid flow in porous media since the modeling process requires the
determination of a very accurate fluid velocity. Various superconvergence results have been
established for the mixed finite element for elliptic problems [11-12, 14] and, for miscible dis-
placement problems [2-6, 9, 13]. In the 1990s, Lin et al.[14-15] introduced a so-called inter-
polation postprocessing technique into the finite element mthods and obtained the globally
high-accuracy approximation for solution problems. C.M.Chen and Y.Q.Huang [6] presented
an element analysis methods for the high-accuracy theory of the finite element methods.

The paper is organized as follows: In Section 2 we formulate the problem and its LSM
finite element approximation and the coerciveness of the bilinear form in appropriate spaces
are stated. In Section 3 the interpolation operators and an auxiliary projection are defined and
some identity technique results are presented. The superconvergent approximation properties
are derived for the LSM method.

2. Problem Formulation and the LSM Approach

We assume that the matrix of coefficients A = (a;;(z))? x € Q, is positive definite and

ij=1
the coefficients a;;(x) are bounded; i.e. there exist constants a1 and as such that
ai1(T¢ < (TAC < ax (¢, (2.1)
for all vectors ¢ € IR? and all z € Q.
The standard notations for Sobolev spaces H™ () with norm || -||m,0 and seminorms | -|; q,

0 < i < m, are employed throughout. as usual, L?>(Q) = H°(Q) and let (H™(Q2))? be the
corresponding product space. Also, we shall use the spaces H*(T"). Let

V={veH(Q): v=0 on '}
By the Poincaré-Friedrichs inequality
llv]o,0 < Crlvli,e forall veV. (2.2)
Let
= min § inf : 2.
S .

We make the following assumptions with respect to the coefficients of our equation: there
exist constants ag and c; such that

le(z)| <e; forall z€Q, (2.4)
O0<ag<a+ 000127, (25)

where CF is the constant from the Poincaré-Friedrichs inequality above. Hence, the coefficient
c(x) may be negative provided that «; is sufficiently large.
Let 7 = (71, 72) be a smooth vector function and v € H'(£2), we denote that

divr = 0111 + O, gradv = (01v, 02v).
Introducing the following spaces:

W = {r e (L*(0))?, divr € L*(Q)}, (2.6)



