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Abstract

Asynchronous parallel multisplitting relaxation methods for solving large sparse lin-
ear complementarity problems are presented, and their convergence is proved when the
system matrices are H-matrices having positive diagonal elements. Moreover, block and
multi-parameter variants of the new methods, together with their convergence properties,
are investigated in detail. Numerical results show that these new methods can achieve
high parallel efficiency for solving the large sparse linear complementarity problems on
multiprocessor systems.
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1. Introduction

Counsider the linear complementarity problem LCP(M,q):
Mz+qg>0, 2>0, 2zI(Mz4q)=0,

where M = (my;) € R™" and ¢ = (¢x) € R" are given real matrix and vector, respectively.
This problem usually arises in (linear and) convex quadratic programming, in the problem of
finding a Nash equilibrium point of a bimatrix (e.g., Cottle and Dantzig [13] and Lemke [25]),
and also in a number of free boundary problems of fluid mechanics (e.g., Cryer [17]). Therefore,
it has various practical backgrounds. Many efficient iterative methods were established to get
a numerical solution of the LCP(M,q) on sequential computer systems, and their convergence
properties were discussed in depth (see [1], [10], [13], [14], [16], [17], [23], [24], [25], [26], [28] and
[31]). For a systematic and comprehensive study one can refer to Cottle, Pang and Stone [15].
To solve the LCP(M,q) on a high-speed multiprocessor system, we proposed two classes of
synchronous multisplitting relaxation methods by successively projecting the unknowns into
RY = {z = (1,22, -, 2,)T | 2; > 0,i = 1,2,---,a} (see Bai [3]) and by equivalently trans-
forming the LCP(M,q) into a system of fixed-point equations (see Bai and Evans [5] and Bai,
Evans and Wang [6]). In a quite different way, Machida, Fukushima and Ibaraki [27] and Bai[4]
recently presented and discussed another class of multisplitting iterative methods by implicit
splittings of the system matrix. These methods have good parallel computational properties
and are suitable for implementing on synchronous parallel computer systems. They can achieve
high parallel efficiency provided the task is roughly evenly distributed among all processors.
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However, in practical applications, many problems are natural to be decomposed into sub-
problems of unequal sizes due to the special physical properties of the original problems. Hence,
the above assumption about the balanced distribution of a task does not always hold in actual
computations.

To overcome this shortcoming of the abovementioned synchronous parallel multisplitting
iterative methods, and to reduce the idle time of each processor, so that the multiprocessor
system can achieve high parallel efficiency, in this paper, we further present asynchronous and
relaxed variants of the synchronous multisplitting iterative methods proposed in [27] and [4],
in accordance with the principle of using sufficiently and communicating flexibly the currently
available information. These asynchronous multisplitting relaxation methods can be imple-
mented on MIMD multiprocessor system without any mutual wait among the processors, and
hence, they can achieve high parallel computing efficiency in practical applications. When
the system matrix M € R"™*" is an H,-matrix , we set up the convergence theories of these
new methods under suitable conditions on both the multiple splittings and the relaxation pa-
rameters. Moreover, for the convenience of applications, some explicit variants of the new
asynchronous multisplitting relaxation methods are presented by making use of the successive
overrelaxation technique, and their convergence properties are investigated in detail. With some
numerical experiments, we show that these new asynchronous multisplitting relaxation methods
can solve large sparse linear complementarity problems on multiprocessor systems with high
parallel efficiency.

At last, we remark that this work is also a further development of the asynchronous parallel
matrix multisplitting relaxation methods and theories for linear systems of equations in Wang,
Bai and Evans [33], Bai, Wang and Evans [9] and Evans, Wang and Bai [20]; In-depth studies
on parallel synchronous and asynchronous relaxation methods based on operator projection and
fixed-point transformation techniques for solving the large sparse linear complementarity prob-
lems can be found in [3], [5], [6], [11], [18] and [29]; Asynchronous variants of the synchronous
multisplitting relaxation methods in [3], [5] and [6] were given in [3] and [8], respectively; And
generalizations to nonlinear complementarity problem of the synchronous multisplitting relax-
ation methods in [3] were discussed in [2].

2. Establishments of the New Methods

Without loss of generality, we assume that the considered multiprocessor system consists
of a processors, and the host processor may be chosen to be any one of them. For a matrix
M e R let M = B; +C; (i = 1,2,--+,a) be a Q-splittings and E; € R™" (i =

[e]3

1,2,---,a) be « nonnegative diagonal matrices satisfying ZEl = I ( the n x n identity
i=1

matrix). Then the collection of triples (B;,C;i, E;)(i = 1,2,---,«) is called a multisplitting of
the matrix M, and the matrices E;(i = 1,2,---,a) are called weighting matrices. To describe
the new asynchronous multisplitting relaxation methods for the LCP(M,q), we introduce the
following necessary notations: No = {0,1,2,---}; for Vp € Ny, J(p) is a nonempty subset
of the number set {1,2,---,a}; and for Vi € {1,2,---,a} and Vp € Ny, s;(p) is an infinite
sequence of nonnegative integers. Natural and standard conditions about J(p) and s;(p)(i =
1,2,---,a),p € Ny, in the convergence analysis of an asynchronous parallel iteration are:

(1) for Vi € {1,2,-- -, a}, the set {p € Ny|i € J(p)} is infinite;

M = (my;) € R™ ™ is called an H-matrix if my, > 0(k = 1,2,---,n) and there exist positive reals
wi(k = 1,2,---,n) such that M = W~'MW, where W = diag(w1,w2,---,wy), is a diagonally dominant
matrix. In this case, the matrix M € R™™™ is also called a generalized diagonal dominant matrix. (See the
equivalent definition of H-matrix in Section 3.)

M = B + C is called a Q-splitting if B is a Q-matrix. See the definition about a Q-matrix in Section 3.



