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Abstract

This paper studies the discrete minus one norm least-squares methods for the stress
formulation of pure displacement linear elasticity in two dimensions. The proposed least-
squares functional is defined as the sum of the L?- and H ~*-norms of the residual equations
weighted appropriately. The minus one norm in the functional is replaced by the discrete
minus one norm and then the discrete minus one norm least-squares methods are ana-
lyzed with various numerical results focusing on the finite element accuracy and multigrid
convergence performances.
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1. Introduction

In recent years there has been an increased interest in the use of least-squares methods
for numerical approximation of the incompressible Stokes and Navier-Stokes equations [3, 4, 5,
6, 7, 11, 12] and for linear elasticity equations [9, 10, 11, 12, 13, 18, 21]. Such least-squares
approaches are known as including accurate approximations to meaningful physical quantities,
formulation of a well-posed minimization principle and freedom in the choice of finite element
spaces which are not subject to the LBB condition.

In this paper, we attempt to apply H ! least-squares method to planar linear elasticity
equations with pure displacement boundary conditions:

{ —pAu—-A+p)VV-u = f in Q (1.1)

u =0 on 09,

where (2 is a bounded open connected domain in #2 with Lipschitz boundary 6Q; u denotes
the displacement; f is a given body force; and p, A > 0 are the Lamé constants. We assume
that the elastic material is isotropic, homogeneous, and strongly elliptic. Denote by the Poisson
ratio v = m €(0,1).

It is well known that standard Galerkin finite element formulations for elasticity problem
using piecewise linear elements are accurate for moderate values of a Lamé constant A, but, as
the elastic material becomes nearly incompressible, i.e. as A — oo (or v — %), their approx-
imation properties degrade severely [1, 20]. To overcome this, so-called locking phenomenon,
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L?-norm and H!-norm least squares methods with the flux and vorticity formulation for the
generalized Stokes equations that apply to the pure displacement problem of linear elasticity
in [11, 13], and for the pure traction problem in [12]. In our formulation, defining new two
variables as the strain tensor o = 1/2ue(u) scaled by 1/2u and pressure p = —V - u, the second-

order pure displacement problem is reduced to first-order system of linear equations, so-called
strain-displacement-pressure formulation. In the analysis of structural mechanics, the knowl-
edge of the stress or strain is often of greater interest than the knowledge of the displacement.
Even though the approximation of the stress or strain can be recovered from the displacement,
by postprocessing in the standard finite element formulation, in a numerical point of view their
computations require the derivatives of the displacement which imply a loss of precision. But,
in the strain-displacement-pressure formulation we used, the accurate strain can be obtained
directly and the stress can be directly recovered as the linear combination —Ap I + 1/2u o of

strain tensor o and pressure p where I is 2 x 2 identity matrix. The similar formulation for the

elasticity problem can be found in [21] and the stress formulation for the incompressible Stokes
equations were applied to the mixed methods and stabilized Galerkin methods in [2, 15, 17].

Our least-squares functional is similar to that in [3] with ¢ = —1 but it is appropriately
weighted by a Lamé constant u. We will directly establish ellipticity and continuity of the
functional in a product norm involving Lamé constants 4 and X and the L?- and H'-norms. To
make the computation of H ~'-norm to be feasible, we replace the H !-norm in the functional by
the discrete H!-norm following the idea proposed by Bramble, Lazarov and Pasciak including
discrete H~!-norm least-squares approaches for scalar second-order elliptic equations in [6]
and for the Stokes equations in [7]. Such discrete H~! functional is shown to be uniformly
equivalent to the Sobolev norms weighted by the Lamé constants. From this property we show
that standard finite element discretization error estimates are optimal with respect to the order
of approximation as well as the required regularity of the solution, and that they are uniform
in the Lamé constants.

The paper is organized as follows. In section 2, we formulate an equivalent first-order sys-
tems with the strain-displacement-pressure formulation to pure elasticity problem and set some
preliminary results. We introduce H ~'-norm least-squares functional weighted appropriately
by Lamé constant u for the strain formulation and then we establish its ellipticity and continuity
in section 3. In section 4, we consider discrete H !-norm least-squares functional and discuss
an error estimate according to [6] and [7]. Finally section 5 investigates a preconditioner for the
resulting algebraic linear system and present the numerical results implemented by precondi-
tioned Richardson iteration method and multigrid V-cycle algorithm using continuous piecewise
linear finite element spaces.

2. First-Order System Formulations

In this section we formulate a first-order system for H ! least-squares methods with the
strain formulation that is equivalent to the system of equations of linear elasticity with pure
displacement boundary conditions.

For convenience, we let the boldface denote the vector valued function and the under tilde
boldface the matrix-valued function, i.e., the tensor. We use C with or without subscripts to
denote a generic positive constant, possibly different at different occurrences, that is indepen-
dent of the Lamé constants and other parameters introduced in this paper, but may depend
on the domain Q. The colon notation : denotes the inner product on 2*2 and for any tensors
T = (1) and & = (d;;) in L?(€2)?*2, the L*(Q)?*? inner product is defined by

(I,Q)Z/Ql'iédl“-



