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Abstract

In this paper, a V-cycle multigrid method is presented for quadrilateral rotated Q1
elements with numerical integration.
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1. Introduction

The rotated @1 nonconforming element first proposed and used to solve the Stokes problem
by Rannacher and Turek in [12]. Klouéek, Li and Luskin have implemented it to simulate the
martensitic crystals with microstructures [9], [10]. Recently, Shi and Ming [14] gave a detailed
mathematics analysis for this element under the bi-section condition for mesh subdivisions,
which was first introduced by Shi [13] for analyzing the quadrilateral Wilson element. Meanwhile
they also proposed some effective numerical quadrature schemes for this element[14]. Moreover,
they have succeeded in using this element for the Mindlin-Reissner plate problem [11]. Quasi-
optimal maximum norm estimations for the quadrilateral rotated (); element approximation of
Navier-Stokes equations were established in [17].

In this paper, we will investigate multigrid methods for solving discrete algebraic equations
obtained by use of the quadrilateral rotated ()1 elements. An effective V-cycle multigrid algo-
rithm is presented with numerical integrations. A uniform convergence factor is obtained. A
similar idea has been exploited for the Wilson nonconforming element [15] and the TRUNC
plate element [16]. We also mention that some nonconforming multigrid algorithms for the
second order problem are studied in early papers, see [1], [6] for P, nonconforming element,
and [8] for the rectangular rotated Q; element.

The outline of the paper is as follows. In section 2, we introduce the quadrilateral rotated
@1 element. In the last section an effective V-cycle multigrid algorithm is presented.

2. Quadrilateral Rotated ); Elements

We consider the following general 2-order elliptic boundary value problem over a convex
polygonal domain in R?:

Lu = _(aw(allamu) + ay(al,?azu) + az(al,?ayu) + 3y(a228yu)) +aou = f in Q,
v = 0 on 00,

where the coefficients ai1,a12,a22, a € W1’°°(Q), and a > 0, the right hand term f €
Whi(Q),q > 2, WH>(Q) and WH4(Q) are the usual Sobolev spaces.
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We assume that the differential operator £ is uniformly elliptic, i.e. there exists a positive

constant ¢ such that )

THE+E) <) &l <o +8)
i,j=1
for all points (z,y) € Q and real vectors (&1, ).
The weak form of this problem is to find u € Hg () such that

a(u,v) = (f,v) Vv € Hy(Q), (2.1)

where

a(u,v) = / [@110;u0,v + a12(05u0yv + Oyudyv) + a220,udyv + auv]dedy.
Q

Let I';, be a partition of the convex polygonal Q by convex quadrilaterals. Denote I' = 99.
We define by P, the space of polynomials of degrees no more than k, and by @} the space of
polynomials of degrees no more than k in each variable. Let the diameter of K be hx and
assume that hx < h. As in Figure 1, we denote the four vertices of K by P;(z;,y;),1 < i < 4,
and the sub-triangle of K with vertices P;_1, P;, and P;y; by T; (the index of P; is modulo 4).
Define px = max;<;<4 (diameter of the circles inscribed in 7}). It is assumed that the partition
satisfies the assumption: there exists a constant ¢ > 2 independent of h such that

hx < opk. (2.2)

Note that this assumption is equivalent to the usual regularity condition for quadrilateral par-
titions (see [7], pp. 247). Let K = [~1,1] x [~1,1] be the reference square having the vertices
P;(1 <i < 4), then there exists a unique mapping Fx € Q1 (K) given by

4 4
I‘K = Zl‘lNz(f,n), yK - Z%Ni(f;ﬂ),
i=1 i=1

where

N=ta—ga-n, m=taroa-n, m=taroa+n Mm=ta-oa+a

4 4 4
such that Fg(p;) = pi,1 <i <4, Fg(K)= K. We also denote e; = PyPy, e = PiPy,e5 =
P2P3,64:P3P4. R
To each function (£, n) defined on K, we associate a function v on K such that & = vo F.
In the following, we list some geometric properties of an arbitrary quadrilateral mesh:

e~

=K = ag + a1€ + a:n + ar2én, yK =bg + b1& + ban + b12€n.

dag = =1 + T2 + T3 + 24, 4bo = y1 + Y2 + Y3 + Ya.

da; = —x) + T2 + T3 — T4, 4b; = —y1 + Y2 + y3 — Y.
das = —11 — T2 + X3 + T4, 4by = —y1 —y2 + Y3 + ys.
dais = 1 — 22 + T3 — T4, 4b12 = y1 — Y2 + Y3 — Ya-

b1 + bian  bo + b12€

and the Jacobi of Fi is Jx (£,n) = det(DFy) = JE+JE¢+TEn, where, JI = a1by—asby, JE =
a1bia — aaby, JQK = a12b; — azb13. Denote the inverse of Fi by Fgl, then

B _ 1 by +b12§  —az —a12€
(DF¥k) 1(5777) = m <_b1 —b1on a1 +aen )

a1 +a as +a
DFK(fﬂ?) _ < 1 127 2 12€ )



