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Abstract

In this paper we present some algorithms for minimization of DC function (difference
of two convex functions). They are descent methods of the proximal-type which use the
convex properties of the two convex functions separately. We also consider an approximate
proximal point algorithm. Some properties of the e-subdifferential and the e-directional
derivative are discussed. The convergence properties of the algorithms are established in
both exact and approximate forms. Finally, we give some applications to the concave
programming and maximum eigenvalue problems.
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1. Introduction

In this paper we consider solving a special class of nonconvex optimization problems:

minger  f(2), (1.1)

where f: R™ — R is a nonconvex function. In many cases, for example, in optimal control and
engineering design, the nonconvex function f can be dealt with as a difference of two convex
functions

f(z) = g(x) — h(z), VreR", (1.2)

where g : R® — R and h : R™ — R are proper, convex, and lower semi-continuous (l.s.c.). In
this case, the function f is called DC function.

The interest for studying DC function (i.e. difference of two convex functions) is motivated
by the possibility of using twice the underlying convex structure of such representation when
dealing with nonconvex problems. This is especially attractive when one of these convex func-
tions or both is nonsmooth. Although there is a lot of papers devoted to the theory of DC
functions in the literature (see for example, [6] [7] [8] ), only a few have proposed some specific
algorithms and reported some numerical experiments. Here we quote some methods which use
the regularization approach [3] [19], the dual approach [1] and the subgradient method [13],
respectively.

* Received February 13, 2001; final revised July 16, 2001.
1) This work was supported by the National Natural Science Foundation of China, the Oversea Exchange
Fund of Nanjing Normal University, and CNPq of Brazil.



452 W.Y. SUN, R.J.B. SAMPAIO AND M.A.B. CANDIDO

It is well-known that proximal point algorithm (PPA) is an effective method for solving
nonsmooth convex optimization problems. Its remarkable feature is that a nonsmooth convex
optimization problem can be converted to a continuously differentiable convex optimization
problem. Consequently, we can use some methods for smooth optimization to deal with it.
This paper aims to study using proximal point algorithm to minimize a DC function.

Let (-,-) denote the inner product in R™, Iy the set of convex proper and l.s.c functions on
R™. Let f: R™ — R be a DC function on R", i.e. there exist g and h both in I'y such that

f(z) = g(x) — h(z), Yz € R™. (1.3)
Moreover, suppose that Dom(g)N Dom(h) # ¢, where Dom(g) denotes the domain of g
Dom(g) := {z € R" | g(z) < oo}.

The functions g and h can be chosen as strongly convex since one can always add a strongly
convex function to each function, for example,

f(z) = [g(2) + w(@)] = [n(z) + w(2)],

where w : R" — R is a strongly convex function. The corresponding conjugate function of g
and h are denoted by g* and h*, and their respective subdifferentials by dg, 0h, dg* and Oh*.

Proposition 1.1. (see [23] [8])

1.

inf {g(x) — h(e)} = inf {h"(y) =" ()} (14)

2. A necessary condition for x € Dom(f) to be a local minimizer of [ is
Oh(z) C 9g(z). (1.5)
In general, the condition 2 above is hard to be reached and one may relax it to

0g(z) N Oh(x) # ¢. (1.6)

We say that * is a critical point of f if it satisfies (1.6).

The method presented in this paper is closely related to the proximal point algorithm (see
e.g. [17] ). This class of algorithms finds a zero of a maximal monotone operator T by means
of the following iteration:

Tpr1 = (I + CkT)ilwk, (1.7)

where ¢ > ¢ > 0, where c is a suitably small positive number such that I + ¢TI is nonsingular.
The operator Py = (I + ¢xT)~! which is the resolvent of T, is nonexpansive, single-valued on
the whole space, and Lipschitz continuous. When T is the subdifferential of a convex ls.c.
function g, i.e., T = g, the iteration (1.7) becomes

. 1
i1 = argmin{g(z) + 5= || o — 2 17} (1.8)

Rockafellar [17] [18] has developed a detailed study of the convergence on proximal point algo-
rithm. In particular, the algorithm converges linearly at least. If ¢, — oo, the convergence is
superlinear. In addition, the attractive approximate versions of proximal point algorithm are
established by [17] [10].

With this strategy, we propose a new descent algorithm for finding a critical point of a
DC function which satisfies necessary optimality conditions. Each iteration combines an ascent
subgradient step on the second function with a proximal step on the first function. In addition,
the approximate version of our algorithm is also discussed.



