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Abstract

By making use of the Gauss-Seidel-type solution method, the procedure for computing
the interpolation operator of multigrid methods is simplified. This leads to a saving of
computational time. Three new kinds of interpolation formulae are obtained by adopting
different approximate methods, to try to enhance the accuracy of the interpolatory oper-
ator. A theoretical study proves the two-level convergence of these Gauss-Seidel-type MG
methods. A series of numerical experiments is presented to evaluate the relative perfor-
mance of the methods with respect to the convergence factor, CPU-time(for one V-cycle
and the setup phase) and computational complexity.
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1. Introduction

Multigrid(MG) methods are very efficient methods for solving linear systems with a broad
range of applications. The characteristic feature of multigrid iteration is its fast convergence.
This convergence speed does not deteriorate when the discretization is refined, unlike for classi-
cal iterative methods which slow down for decreasing grid size. As a consequence an acceptable
approximation of the discrete problem can be obtained at the expense of computational work
proportional to the number of unknowns, which is also the number of equations in the system.
It is not only the complexity which is optimal, but also the constant of proportionality is so
small that other methods can rarely surpass multigrid efficiency [14] [2] [12].

Usual multigrid methods try to tailor the components to the problem at hand in order to
obtain the highest possible efficiency for the solution process. However, the algebraic multi-
grid(AMG) method is to choose the components independently of the given problem, uniformly
for as large a class of problem as possible. AMG provides a very robust solution method which
can be applied directly to structured as well as unstructured grids. The strengths of AMG are
exactly its robustness, its applicability in complex geometric situations and its applicability to
even solve certain problems which are out of the reach of usual multigrid methods, in particular,
problems with no geometric or continuous background at all as long as the given matrix satisfies
certain conditions [1] [13].

There now exist various different algebraic approaches, all of which are hierarchical and close
to the original AMG idea, but some of which focus on different coarsening and interpolation
procedures. An efficient AMG algorithm for M-matrices is described in [13]. In [3] [4] [5] [6] [7]
[8] [9] and [10], Chang et al. improve the interpolation operator and present different algorithms
to construct the coarse grid equations. In this paper, we apply the Gauss-Seidel solution
method to the computation of operator-dependent interpolation, and thus suggest three new
Gauss-Seidel-type multigrid methods, whose convergence is also proved. Furthermore, many
numerical examples are discussed to compare the efficiency of AMG methods. In section 2, the
basic AMG algorithm by Chang is described. Then three different AMG methods are proposed
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in section 3. In section 4, a convergence analysis for each of the AMG algorithms is given.

Numerical analysis and computational results are reported in section 5. Finally, conclusions
are presented in section 6.

2. The Basic AMG Algorithm

Consider a (sparse) linear system of equations: AU = F or E?:1 ajju; = fi(i =1,---,n).
We first have to generate a sequence of smaller and smaller systems of equations: A™U™ = F™
or i afiult = f*(i = 1,-,nm), where A™ = (a)n,, xn, U™ = (uf, - up )T, F™ =
(fr fm)  m =1, ,Myn=n; >--->na, A = A,U' =U,F' = F.

A fictitious grid Qm can be regarded as a set of unknown u}*(1 < j < ny,). The coarser
grid Q™! is then chosen as a subset of 2™, which is denoted by C™. The remainder subset
— C™ is denoted by F™. A point i is said to be strongly connected to j, if

lafi| > - max|alk| 0<h<1.

Let S/™ denote the set of all atrongly connected points of the point i and let C/* =
CmOSH,NM={j € Q" j #i,a]} #0}, D" = N* = C[",Di = D"\ S[*, DY = D" — D;.

Each variable in C™ interpolates directly from the corresponding variable in Q™! with a
weighting of unity, and each variable i € F'™ interpolates from the smaller set C}".

Because the error e* to be interpolated in an AMG method is obtained after a smoothing
process, we have

T+ > alel =dr ~0,Vie F™, (2.1)
JEN]™

which can be rewritten as

“l+2alkek+2a”3+2a " x0,Vie F™. (2.2)
keCm™ jeD; jeDY
Let g7} = %,j € D",k € C7*, for point j € D}*, the following approximations
kec™
are used in (2.2):
(1) For point j € DY,

e if 177 =0,af} <0,
—ei, if 1™ =0,a™ >0,
e ={ 53 o (2.3)
J QEkeClm g‘%ezb - Egn, if ZZL > 0,6{';’ > 0. 5,a” < 0, .
Ykecm GIRER otherwise.

(2) For points j € Df, more accurate approximations are used,
2) eom gher —eit, i n <0.75,6% > 0.5,a7} <0,

ey = %(Ekecl?“ gier +ei), if gl >2,67 >0.5,a7} <0, (2.4)
2 kecm IGkeR otherwise.
where
2 kecm Gy laZ |13}
m i J m _ %5iltyy
i =~ omp g T = 15; | —{k: ke C™al, #0}.
1] ZkeCi’" |a;‘7}c|7 (¥ Zkecm | |) zJ i J

Substituting (2.3)-(2.4) into (2.2) is equivalent to modifying the coefficients in (2.2) by
combining the following steps:
Step(1) add —|a}}| to aj},Vj € DZ( ), which is equivalent to e7* being replaced by e;* or —ej";

Step(2) add af} gy, to ajy,Vk € C7",Vj € DZ( ), which is equwalent to ef* being approximated
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