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Abstract
The convergence problem of the family of Euler-Halley methods is considered under
the Lipschitz condition with the L-average, and a united convergence theory with its
applications is presented.
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1. Introduction

Let E and F be real or complex Banach space with norm ||.||, and let f: D C E — F
be a nonlinear twice differentiable operator. The family of Euler-Halley iterations with the
parameter A € [0, 2] for solving the operator equation f(z) = 0 is defined as follows:

Tpt1 = Tra(xn) = op +up(zy) +vpa(zy), n=0,1,---, (1.1)
where
up(x) = —f'(z)"" f(=),
via(r) = —%f’(l’)_1f"($)uf($)Qf,>\($1)Uf(55),

Qra(z) = {I+3f' (@) f'(@)us(x)}”

This family includes, as particular cases, the well known Euler method (A = 0),[1, 4, 12],
the Halley method (A = 1), [3, 5, 10, 12, 18] and the convex acceleration of Newton’s method
or supper-Halley method (A = 2),[6, 7, 11], so that recent interests are focused in this direction,
see for example [2, 8, 9]. In particular, using a quadratic majorizing function, Argyros et al
analyze the convergence of the method (1.1). However it is incorrect as shown by Han [9].
In [8], Gutierrez and Hernandez established the convergence with a cubic polynomial as the
majorizing function under the classical Lipschitz condition of f” while Han [9] established the
convergence under the weak condition, so-called, y-condition of f”, which was first presented
by Wang [13, 14] when he investigated the convergence of the family of Halley methods. The
purpose of the present paper is to give a united convergence theory for the family of Euler-
Halley iterations such that all the known results are included as its special cases. Also some
new results are obtained as the corollaries. It should be noted that this work is in sprit of
Wang’s idea in [15, 16].

2. Preliminaries and Lemmas

Let D C E be a convex subset, open or closed. For xg € E,r > 0, let B(xo,r) denote the
open ball with the radius r and the center xy while the corresponding closed ball is denoted
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by B(zg,7). Through the paper, we always assume that f’(z) ! exists. In order to study the
convergence we require some definitions and lemmas, some of which are directly taken from
[15, 16].

Definition 2.11%1, A function f from D to F is called to satisfy the center Lipschitz
condition in the ball B(zg,r) with the L average if

p(z)
Hﬂ@—ﬂmmSA L(u)du, Yz € Blzo,r), (2.1)

where p(z) = ||z — zo|| and L is a positive integrable function on the interval [0, R] for some

sufficient large number R > 0, for example, with fOR(R —u)L(u)du = R.
Take ro > 0 such that

/ " L(w)du =1 (2.2)
and set : v
_ /0 wL (u)du. (2.3)
For 3 € (0,b], define
ht) =B —t+ /Ot(t —WI(u)du, Vi€ [0,R). (2.4)

Lemma 2.1['5], The function h is decreasing monotonically in [0, 7], while it is increasing
monotonically in [rg, R]. Moreover, if § < b,
h(B) >0, h(ro)=8-0<0, h(R)=p8>0.
Consequently, h has a unique zero in each interval, respectively, which are denoted by r; and
ro. They satisfy
ﬁ<7‘1<%ﬁ<7‘0<7‘2<R (25)

when 3 < b and r; = ro when 8 = b.

Furthermore, we assume that L is a positive nondecreasing differentiable function in [0, R].
Then we have the following lemma.

Lemma 2.2. Let h be defined as (2.4) and 8 < b. Then, for each ¢ € [0, ],

(i) Hi(t) = B'(t) 20" (t)h(t) < 1;

(ii) Th)‘(t) S [0,1“1];

(iii) t < T a(2).

Proof. (i) It suffices to show that

g(t) = n'(t)* — h"(t)h(t) > 0.
Since
g'(t) = KON (t) = K" (D) = K (B)L(E) — L'(Hh(t) <O,

so that g(t) > g(r1) = h/(r1)?> > 0 and proves (i).
Hi(1)? A A

(ii) Observe that
Ty (1) = mﬁ”(l = 3)+ 5 (A= 1) Ha(t) - Hy (t)]-
Since Hy(t) is negative and 0 < Hp(t) < 1 for each t € [0,74], it follows that T}, ,(¢) > 0 for
all ¢ € [0,71] and each X\ € [1,2]. Hence T}, A(t) is monotonically increasing on [0,7] for each
A € [1,2]. Consequently, Ty, A(t) < Ty a(r1) = r1 for each A € [1,2]. On the other hand, for any
A € [0, 1], we have
Th’)\(t) S Thyl(t) S ry.

Thus (ii) holds.
(iii) This results from that up(t) > 0 and vy A (¢) > 0. W



