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Abstract

A new high-order time-stepping finite element method based upon the high-order nu-
merical integration formula is formulated for Sobolev equations, whose computations con-
sist of an iteration procedure coupled with a system of two elliptic equations. The optimal
and superconvergence error estimates for this new method are derived both in space and
in time. Also, a class of new error estimates of convergence and superconvergence for the
time-continuous finite element method is demonstrated in which there are no time deriva-
tives of the exact solution involved, such that these estimates can be bounded by the norms
of the known data. Moreover, some useful a-posteriori error estimators are given on the
basis of the superconvergence estimates.
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1. Introduction

Our purpose in this paper is to study the finite element method for the following Sobolev
equation:

A(t)us+ B(t)u
(
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where Q@ € R? (d > 1) is an open bounded domain, J = (0,T], T > 0, f and v are known
smooth functions. We assume that the operator A(t) is a strongly elliptic symmetric operator,

ft), in QxJ,
0, on 00 xJ, (1.1)

u(-,t
u(-,

)
0)

v, x €,

d
0 0
A(t) == _Mzz:l 7 <aij($,t)a—xj> +a(z,t)I, a(z,t) >0,
and that B(t) is an arbitrary second order elliptic operator,
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where I is the identity operator, a;j, a, b;j, b; and b are smooth functions, and there exits
Co > 0 such that

d d
Z aijfifj > 00265, V¢ € Rd, (iL“,t) €N xJ. (].].)
i,j=1 i=1

The problem (1.1) can arise from many physical processes. For the fomulation of (1.1) and
the questions of existence, uniqueness and stability of the solution, we refer to [2, 3, 19] and
the references cited in [6, 7, 8]. The numerical approximations to the solution of (1.1) have
been investigated by many authors. Finite difference methods have been studied in [6, 10, 11],
while Ewing [8] has considered several Galerkin approximations and obtained optimal error
estimates for nonlinear boundary cases. Also, Arnold, Douglas and Thomée [1] and Nakao [17]
have studied Galerkin approximations to the solution of (1.1) in a single space dimension with
periodic boundary conditions. L? error estimates and superconvergence results are derived by
these authors. Recently, the authors in [14, 15, 16] have used a so-called Ritz-Volterra type
projection to study finite element approximations for nonlinear versions of the above problems
and derived some optimal error estimates for Dirichlet and nonlinear boundary conditions. The
LP (2 < p < 00) norm error estimate can be found in [16] for linear equations.

In this paper we reformulate (1.1) as an integral equation of Volterra type, use the higher-
order numerical integration formula to construct a higher-order time-stepping procedure and
give some error estimates. The formulation of our numerical approximations is given in Section
2, and error estimates of convergence and superconvergence for the semi-discrete and the fully-
discrete finite element methods are demonstrated in Sections 3, 4 and 5, respectively. The
special feature of our error estimates in Sections 3 and 4 compared with the others [1, 6, 7,
8, 12-17] is that there are no time derivatives of the exact solution u of (1.1) involved in the
analysis and the results, such that these estimates are bounded by the norms of the known data
v and f.

2. Formulation of finite element methods

Let Sy, be a family of finite element subspaces of H}(Q) with the following standard approx-
imation properties: For some [ > 1,

inf (I = wll +hllx = wlh) < CH*lwllr, 1<l we HHH@QNHK©Q), (2.1)
XEOh

where C' > 0 is a constant independent of h, and || ||, is the norm in the Hilbert space H™((2)
with || || = || - |lo, and H{ () is the completion of C§°(£2) under the norm || - ||1 .

The time-continuous finite element approximation to the solution u of (1.1) can now be
defined as a mapping up(t) : J — Sp, by

A(t;uh,t7X)+ B(t’u/hX) = (f;X); X € Sh;
Up (0) = Up
where vj, is an appropriate approximation of v into Sy, A(¢;-,-) and B(t;-,-) are the bilinear
forms associated with the operators A(t) and B(t) on H}(2) x HE ().
Before we define the fully-discrete method, let us define (see, for example, [16]) Ax(t) :
Sp — Sk by

(2.2)

(Ah (t)(lsa 1/)) = A(t7 (ZSJ 1/))7 V(b; 1/} € Sh (23)
and Bh(t) : Sh — Sh by
(Bu(t)¢,¥) = B(t;6,9),  Vo,1 € Sp. (2.4)
Also, we define the L?—projection operator P, : L2(Q) — S, for any w € L?(2), by
(Phw —w,x) =0, Vx €S (2.5)



