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Abstract

In this paper, we extend the numerical embedding method for solving the smooth
equations to the nomnlinear complementarity problem. By using the nonsmooth theory,
we prove the existence and the continuation of the following path for the corresponding
homotopy equations. Therefore the basic theory of the numerical embedding method for
solving the nonlinear complementarity problem is established. In part II of this paper, we
will further study the implementation of the method and give some numerical exapmles.
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1. Introduction

The nonlinear complementarity problem is a very important mathematical programming
problem. The development of theory and algorithms for this problem has a long history and
there have numerous methods for solving this problem. See [1] for a comprehensive review of
the literature.

Recently, based on the B-differentiable equations approach, many new methods for solving
the nonlinear complementarity problem have been proposed. Harker and Xiao[2] established a
damped-Newton method for solving the nonlinear complementarity problem and provided many
numerical results. Pang and Garbriel[7] proposed an NE/SQP method for solving the nonlinear
complementarity problem and proved its global and local quadratically convergence. These
methods are important to the theories and algorithms for solving the nonlinear complementarity
problem.

In this paper, based on the B-differentiable equations theory, we will study: how to extend
the practical numerical embedding method to the nonlinear complementarity problem; How to
prove the existence, the uniqueness and the continuation of the following path for the corre-
sponding homotopy equations by using the B-differentiable theory; How to solve the nonlinear
complementarity problem by numerical embedding method proposed in this paper. All this
questions will be studied in this paper and the subsequent paper.

2. Preliminaries

We consider the following nonlinear complementarity problem:
Find « € R™ such that

>0, f(x)>0, and 2" f(x)=0 (2.1)

where f : R" — R" satisfies || v f(z) — Vf(v)|| < L||lx — y||o- This problem is denoted by
NCP(f).
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Following the concept of a Minty-map[2][3], the NCP(f) can be converted into the B-
differentiable equations:

F(z)=0 (2.2)
where F': R™ — R" is defined by
F(z)=f@a") +2" (2.3)
with 7] = max(z;,0), z; =min(z;,0), z*=(zf,z5,---,z})T and
x~ = (z7,25, - ,z,;)’. In other words, z solves (2.2) if and only if 21 solves the nonlinear

complementarity problem (2.1). Hence, by solving the systems (2.2), we can get the solution
of the NCP(f) (2.1).

In order to present some properties of the mapping F' defined by (2.3), let us review some
notions in nonsmooth analysis.

The following definition is due to Robinson[13].

Definition 2.1.[6][13] A function F': D C R™ — R"™ is B-differentiable at a point x € D if
there exists a positively homogeneous function BF(x) : R — R" (i.e., BF(z)(Av) = ABF(z)v
forall A >0 and v € R™), called the B-derivative of F' at z, such that

lin [Pz +v) — F(x) = BF(@)o)/ o] = 0.

If F is B-differentiable at all points x € D, then F is called B-differentiable on D.

In a finite-dimensional Euclidean space R™, Shapiro[14] showed that F' is B-differentiable
at = if and only if it is directionally differentiable at x. In this case, the B-derivative and the
directional derivative are identical.

The basic properties of a B-differentiable function are summarized in the following theorem.

Theorem 2.2[6]. Let F': R® — R™ be locally Lipschitz continuous at a point .

(1) If F is Fréchet differentiable at x, then it is B-differentiable at © and BF (z) = VF(z).
Conwversely, if F' is B-differentiable at © and if the B-derivative BF(z)v is linear in v, then F
is Fréchet differentiable at x.

(2) If F is B-differentiable at x, then the B-derivative is unique. Moreover, BF(x) is
Lipschitz continuous with the same modulus as F'.

(3) If F is B-differentiable at x, then F is directionally differentiable at x in any direction
and F'(z,d) = BF (z)d.

(4) The addition, subtraction and chain rules hold for the B-derivative.

Extending the notion of a strong F-derivative, Robinson[13] further introduced the following
definition.

Definition 2.3.[13] A function F' : D C R"™ — R"™ is strong B-differentiable at a point
x € D if F is B-differentiable and

lim {F(y) — F(z) - [BF(z)(y — =) — BF(z)(z — z)]}/[ly — z[| = 0.
If F is strong B-differentiable at all points x € R™, then F is called strong B-differentiable on
D.
Using the above definitions, it is easy to prove that[2], the function F' is B-differentiable
everywhere, and its B-derivative is

(BEG)): = Y BE (o), (24)
j=1
where
' fij(@®)v; Jj € a(x)
BF}(z)v; = fij@t)l + Loy j € B(x)

Lijv; j€n(x)



