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Abstract

This paper is mainly concerned with solving the following two problems:
Problem I. Given X € C™*™, A = diag(A1,X\2,--+,An) € C™*™. Find A €
ABSR"™ " such that
AX = XA
where ABSR™ " is the set of all real m x n anti-bisymmetric matrices.
Problem II. Given A* € R"*". Find A € Sg such that

|A* — Allp = min [|A" — A||r,
A€SE

where || - ||r is Frobenius norm, and Sr denotes the solution set of Problem I.

The necessary and sufficient conditions for the solvability of Problem I have been stud-
ied. The general form of Sg has been given. For Problem II the expression of the solution
has been provided.
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1. Introduction

Inverse eigenvalue problem has widely been used in engineering. For example inverse eigen-
value method is a useful means in vibration design and vibration control of flyer. In recent
years a serial of good conclussions have been made for inverse eigenvalue problem. However,
inverse problems of anti-bisymmetric matrices have not be concerned yet. In this paper we will
discuss this problem.

We denote the complex n X m matrix space by C™*™, the real n x m matrix space by
R™ ™ and R™ = R™*!, the set of all matrices in R"*™ with rank r by R"**™, the set of all
n X n orthogonal matrices by OR™*", the set of all n X n anti-symmetric matrices by ASR™*",
the column space, the null space and the Moore—Penrose generalized inverse of a matrix A by
R(A), N(A), AT respectively, the identity matrix of order n by I,,, the Frobenius norm of A by
||Al| . We define inner product in space R"*™, (A, B) = tr(BTA) = Xn: % ai;bij, VA,B €

i=1j=1
R™ ™, Then R"™™™ is a Hilbert inner product space. The norm of a matrix produced by the
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inner product is Frobenius norm. Let Sy = (ex,ex_1,--,e1) € R¥*¥ in which e; is the i-th
Cloumn of the identity matrix Ij.
Definition 1. A = (a;;) € R™*", if

aj; = —aj;, Qi = —On—jt1,n—itls i,j=12,...,n

then A is called a anti-bisymmetric matriz. The set of all anti-bisymmetric matrices is denoted
by ABSR™™ ™.

Now we consider the following problems:

Problem I. Given X € C™*™, A = diag(A1, A2, -, Am). Find A € ABSR™ ™ such that

AX = XA
Problem II. Given A* € R™*". Find A € Sg such that

A* — A|lp = min ||A* - A
I lF grelggll |7

where Sg is the solution set of problem I.

At first, in this paper, we will discuss the character of eigenvector for anti-bisymmetric
matrices. Then we will give the necessary and sufficient conditions for the solvability of Problem
I and the expression of the general solution of Problem I in real number field, and point out
Sg is a closed convex set. At last, we will prove that there exists a unique solution of Problem
IT and give an expression of the solution for Problem II.

2. The Solvability Conditions and General Form of the Solutions for
Problem I in Real Number Field

At first we discuss the construction of ABSR™ " and the character of eigenvector for ma-
trices in ABSR™*".

Let
k= [g], [x] is integer number that is not greater than x. (2.1)
1 Iy Iy T
Wh =2k D=— DD =1I; 2.2
en n , \/5 ( Sk —Sk > ) n» ( )
I, O Iy,
and whenn=2k+1, D=--|0 +v2 0|, DID=I,. (2.3)
V2
Sp 0 =S

Lemma 1. A € ABSR™ " if and only if
A=S,AS,, A=—AT

Theorem 1.

. M  HS
ABSRZkx2k _ k M,H € ASRF** 2.4
SR {( S.H S,MS, ,H e ASR (2.4)

N C  HS:
ABSRZkHx(2k+1) — ¢t 0 -CTs, N,H € ASR*** C e RF . (2.5)
SgkH SxC  SpNSy



