THE SOLVABILITY CONDITIONS FOR INVERSE EIGENVALUE PROBLEM OF ANTI-BISYMMETRIC MATRICES*1)

Dong-xiu Xie

(Beijing Institute of Machinery Industry, Beijing 100085, China)

Xi-yan Hu

(Department of Applied Mathematics, Hunan University, Changsha 410082, China)

Lei Zhang

(Hunan Computing Center, Changsha 410012, China)

Abstract

This paper is mainly concerned with solving the following two problems:

Problem I. Given $X \in C^{n \times m}$, $\Lambda = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_m) \in C^{m \times m}$. Find $A \in$ $ABSR^{n\times n}$ such that

$$AX = X\Lambda$$

where $ABSR^{n\times n}$ is the set of all real $n\times n$ anti-bisymmetric matrices.

Problem II. Given $A^* \in \mathbb{R}^{n \times n}$. Find $\hat{A} \in S_E$ such that

$$||A^* - \hat{A}||_F = \min_{A \in S_E} ||A^* - A||_F,$$

where $\|\cdot\|_F$ is Frobenius norm, and S_E denotes the solution set of Problem I.

The necessary and sufficient conditions for the solvability of Problem I have been studied. The general form of S_E has been given. For Problem II the expression of the solution has been provided.

Key words: Eigenvalue problem, Norm, Approximate solution.

1. Introduction

Inverse eigenvalue problem has widely been used in engineering. For example inverse eigenvalue method is a useful means in vibration design and vibration control of flyer. In recent years a serial of good conclussions have been made for inverse eigenvalue problem. However, inverse problems of anti-bisymmetric matrices have not be concerned yet. In this paper we will discuss this problem.

We denote the complex $n \times m$ matrix space by $C^{n \times m}$, the real $n \times m$ matrix space by $R^{n\times m}$, and $R^n=R^{n\times 1}$, the set of all matrices in $R^{n\times m}$ with rank r by $R^{n\times m}$, the set of all $n \times n$ orthogonal matrices by $OR^{n \times n}$, the set of all $n \times n$ anti-symmetric matrices by $ASR^{n \times n}$, the column space, the null space and the Moore–Penrose generalized inverse of a matrix A by $R(A), N(A), A^+$ respectively, the identity matrix of order n by I_n , the Frobenius norm of A by $||A||_F$. We define inner product in space $R^{n\times m}$, $(A,B)=\operatorname{tr}(B^TA)=\sum_{i=1}^n\sum_{j=1}^ma_{ij}b_{ij}, \quad \forall A,B\in$

 $R^{n\times m}$. Then $R^{n\times m}$ is a Hilbert inner product space. The norm of a matrix produced by the

^{*} Received July 5, 1998; Final revised May 4, 1999.

¹⁾ Supported by the National Nature Science Fundation of China.

inner product is Frobenius norm. Let $S_k = (e_k, e_{k-1}, \dots, e_1) \in \mathbb{R}^{k \times k}$ in which e_i is the i-th Cloumn of the identity matrix I_k .

Definition 1. $A = (a_{ij}) \in \mathbb{R}^{n \times n}$, if

$$a_{ij} = -a_{ji},$$
 $a_{ij} = -a_{n-j+1,n-i+1},$ $i, j = 1, 2, \dots, n$

then A is called a anti-bisymmetric matrix. The set of all anti-bisymmetric matrices is denoted by $ABSR^{n\times n}$.

Now we consider the following problems:

Problem I. Given $X \in C^{n \times m}$, $\Lambda = \text{diag}(\lambda_1, \lambda_2, \dots, \lambda_m)$. Find $A \in ABSR^{n \times n}$ such that

$$AX = X\Lambda$$
.

Problem II. Given $A^* \in \mathbb{R}^{n \times n}$. Find $\hat{A} \in S_E$ such that

$$||A^* - \hat{A}||_F = \min_{A \in S_E} ||A^* - A||_F,$$

where S_E is the solution set of problem I.

At first, in this paper, we will discuss the character of eigenvector for anti-bisymmetric matrices. Then we will give the necessary and sufficient conditions for the solvability of Problem I and the expression of the general solution of Problem I in real number field, and point out S_E is a closed convex set. At last, we will prove that there exists a unique solution of Problem II and give an expression of the solution for Problem II.

2. The Solvability Conditions and General Form of the Solutions for Problem I in Real Number Field

At first we discuss the construction of $ABSR^{n\times n}$ and the character of eigenvector for matrices in $ABSR^{n\times n}$.

Let

$$k = \left[\frac{n}{2}\right],$$
 [x] is integer number that is not greater than x. (2.1)

When
$$n = 2k$$
,
$$D = \frac{1}{\sqrt{2}} \begin{pmatrix} I_k & I_k \\ S_k & -S_k \end{pmatrix}, \quad D^T D = I_n;$$
 (2.2)

and when
$$n = 2k + 1$$
, $D = \frac{1}{\sqrt{2}} \begin{pmatrix} I_k & 0 & I_k \\ 0 & \sqrt{2} & 0 \\ S_k & 0 & -S_k \end{pmatrix}$, $D^T D = I_n$. (2.3)

Lemma 1. $A \in ABSR^{n \times n}$ if and only if

$$A = S_n A S_n, \qquad A = -A^T$$

Theorem 1.

$$ABSR^{2k \times 2k} = \left\{ \begin{pmatrix} M & HS_k \\ S_k H & S_k MS_k \end{pmatrix} \middle| M, H \in ASR^{k \times k} \right\}.$$
 (2.4)

$$ABSR^{(2k+1)\times(2k+1)} = \left\{ \begin{pmatrix} N & C & HS_k \\ -C^T & 0 & -C^TS_k \\ S_k H & S_k C & S_k NS_k \end{pmatrix} \middle| N, H \in ASR^{k\times k}, C \in R^k \right\}.$$
 (2.5)