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Abstract

The unsteady incompressible Navier-Stokes equations are discretized in space and stud-
ied on the fixed mesh as a system of differential algebraic equations. With discrete projec-
tion defined, the local errors of Crank Nicholson schemes with three projection methods
are derived in a straightforward manner. Then the approximate factorization of relevant
matrices are used to study the time accuracy with more detail, especially at points adjacent
to the boundary. The effects of numerical boundary conditions for the auxiliary velocity
and the discrete pressure Poisson equation on the time accuracy are also investigated. Re-
sults of numerical experiments with an analytic example confirm the conclusions of our
analysis.
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1. Introduction

Let us consider the unsteady incompressible Navier—Stokes equations (INSE)

1
88—1: + (w - grad)w + grad p = @div grad w +f (1.1)

divw =0 (1.2)

on a two—dimensional rectangular region  with boundary 99Q. Here w = (u,v)” is the velocity
vector; p is the pressure; and f a known vector function of x,y,and ¢. The initial condition is
given as

wli—o =w® on Q (1.3)
satisfying (1.2). We are concerned mainly with the solid wall boundary condition

w=wpg on ) satisfying 7{ wprds =0 (1.4)
a0

The difficulty in the numerical solution of the above problem lies in that (1.1) and (1.2)
are partial differential equations with constraint; i.e., the system of equations is not entirely
evolutionary. The projection methods of Temam [23], Chorin [2], and van Kan [25] have been
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widely used and have proven to be most efficient for this type of problems. However, it is
not always well understood and many of its problems need further investigation and rigorous
analysis. Historically, Temam [23] gave the convergence proofs for the proposed methods with
full discretization, but only Chorin [2] gave the error estimate for his proposed method with full
discretization. Then with recent interest, great progress has been made in the study of errors of
projection methods; for example: the works of E and Liu [4, 5], Orszag, Israeli, and Deville [16],
Shen [20, 21], Rannacher [19], and Hou and Wetton [9, 26]. Significant as these mathematical
papers are, many analyses are done for the Stokes equations or for the semi-discrete INSE
(space continuous), and some with explicit approximation for convection. It is the author’s
opinion that much work is required before the error estimation of a projection method for a
fully discretized INSE become easily accessible to the computational community.

It has been the author’s attempt to contribute in this direction using simple mathematical
tools familiar to the computational fluid dynamics community. With spatial discretization on a
fized mesh, the INSE become a system of differential algebraic equations (DAE), for which the
local errors of a numerical method can be quite different from its counterpart for the ordinary
differential equation, see [7] for example. Further errors are introduced with the projection
method for the system derived from INSE. The authors [11, 12] defined discrete projection
with the minimum requirement as that needed for the projection step in numerical solution
of the system from INSE. With the projection operators, the derivation of local errors of the
velocity and the pressure gradient for projection methods becomes straightforward with Taylor
series. This paper studies in particular the fully implicit (for convection and viscosity) Crank
Nicholson (CN) schemes, mainly CN2 to be described below, and three projection methods:
pressure correction (PC) studied thoroughly by van Kan in [25], pressure (PR) of the earlier
projection papers and the present version here of Kim and Moin [15], and component-consistent
pressure correction (CCPC) proposed by the authors in [11] for its approximate preservation
of component-consistency under projection. This version has been used by Bell, Colella, and
Glaz with a different projection procedure in [1], and interpreted as the present version by [4].

The global errors on the fixed mesh follow from the local errors, as for the general DAE [11],
with correct interpretation of the assumption that the right hand side functions have bounded
derivatives in some closed region of our interest; but convergence for a finite time interval
is almost trivial, as it is for the ordinary differential equations, and gives little information
to problems of INSE as partial differential equations. To gain some insight into this type
of problems, the local errors are analyzed with approximate factorization (AF) of relevant
matrices as Yanenko [27], Perot [17, 18], and the author [10], with special attention to the
discrete approximation on points adjacent to the boundary. From our analysis we can see, for
example, the reason why an improvement in the numerical boundary condition (NBC) for the
auxiliary velocity over just (1.4) can lead to an increase of an order in the accuracy of the
velocity, e.g. the Kim and Moin method in [15]. Also several NBCs for the auxiliary velocity
and the discrete pressure Poisson equation frequently stated in literature will be investigated
and clarified in terms of discrete projection.

In Section 2, the discrete projection will be stated and two Crank Nicholson (CN) schemes
for the DAE formed from INSE will be given. Three projection methods based on these schemes:
PC, PR, and CCPC will be described and their local errors of the velocity and the pressure
gradient will be briefly derived in Section 3. Then these errors will be studied more carefully with
the AF method in Section 4. Several NBCs frequently stated in literature will be summarized
in terms of discrete projection in Section 5. Finally, in Section 6, the results of numerical
experiment with an analytic example, on the staggered mesh for simplicity, will be given.
These results confirm the conclusions of our analysis.

Here a word on the notation of this paper is in order: boldface (Z) denotes a “double”



