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Abstract

To raise the efficiency of Rosenbrock methods Chen Lirong and Liu Degui have con-
structed the parallel Rosenbrock methods in 1995, which are written as PRMs for short.
In this paper we present a class of modified parallel Rosenbrock methods which possesses
more free parameters to improve further the various properties of the methods and will be
similarly written as MPROWSs. Convergence and stability of MPROWSs are discussed. Es-
pecially, by choosing free parameters appropriately, we search out the practically optimal
2-stage 3rd-order and 3-stage 4th-order MPROWS, which are all A-stable and have small
error constants. Theoretical analysis and numerical experiments show that for solving stiff
problems the MPROWS searched out in the present paper are much more efficient than
the existing parallel and sequential methods of the same type and same order mentioned
above.
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1. Introduction

In many fields of science and engineering technology, we often meet with stiff ordinary
differential equations. In order to solve these systems, we have to use the implicit methods,
which means that nonlinear implicit equations must be solved. In general, this nonlinear systems
can be solved only by iteration. This adds to the problem of stability, that of convergence of
the iterative process (cf.[5,15]). In 1963, Rosenbrock['”l first presented a class of methods,
which avoids nonlinear systems by replacing them with some linear systems. Therefore at each
calculating step only the Jacobian matrix has to be evaluated and linear systems have to be
solved. The methods of this type are known as Rosenbrock methods and sometimes called ROW
methods (cf.[1]). Since then, many methods of this type and much numerical experience with
them have been obtained by Calahan!?!, van der Houwen!'!, Cash!®/, N¢rsett!'®!, Norsett and
Wolfbrandt!'®!, Kaps and Rentrop®!, Kaps and Wanner['?!, Shampine!'®!, Kaps, Poon and Buil®]
and Kaps and Ostermann!®7]. To raise the efficiency of sequential Rosenbrock methods, in 1995
Cheng Lirong and Liu Deguil® presented a class of parallel Rosenbrock methods (PRMs), which
also avoids nonlinear systems and is more efficient than the sequential ROW methods mentioned
above. In order to improve further the convergence and stability of PRMs, in the present paper,
we construct a new class of parallel Rosenbrock methods, which is called the Modified Parallel
Rosenbrock Methods and denoted similarly by MPROWSs. Since the MPROWSs have more free
parameters which can be appropriately chosen to improve further various properties of the
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methods, the parallel methods constructed in the present paper can achieve higher precision
and better numerical stability properties. In fact, by choosing free parameters to optimize
the properties of the methods, we have constructed the 2-stage MPROW of order 3 and the
3-stage MPROW of order 4, which are all A-stable and have small error constants. Theoretical
analysis and numerical experiments show that for solving stiff problems with a fixed stepsize,
the MPROWS are as fast as the PRMs of the same order and much faster than the ROWs of
the same order, the accuracy of the computational results of the MPROWS are generally higher
than that of ROWs and much higher than that of PRMs. Moreover, the number of stages of
the 4th-order MPROWs is one less than that of commonly used ROWs of the same order.

The outline of the paper is as follows. Section 2 is devoted to the construction of modified
parallel Rosenbrock methods. In section 3 we investigate the convergence and the stability
properties of MPROWS in general. In section 4 and 5, by selecting the free parameters ap-
propriately, we construct the 2-stage MPROW of order 3 and the 3-stage MPROW of order 4
respectively, which are demonstrated to be all A-stable and have small error constants. In the
final section 6, numerical experiments are given which show that the MPROWSs indeed perform
better than the parallel and sequential methods of the same type.

2. Modified Parallel Rosenbrock Methods

Consider the initial value problem

y = f(y), t € [a,b],
{ y(a) = Yo, Yo € Rm) (21)

where the mapping f(y) is assumed to satisfy a Lipschitz condition and has all continuous
derivatives used later. The exact solution of the problem (2.1) is always denoted by y(t), a <
t < b. In 1979, Nersett and Wolfbrandt!'® gave the s-stage Rosenbrock methods for solving
(2.1)

i—1

i—1
(I = hyis ki = hf(yn + > aijky) + hJ 32 Bijks, i=1,2,..,s,
Jj=1

j=1

. (2.2)
Ynt1 = Yn + ) biki,
=1
where h > 0 is the integration stepsize, t, = a + nh, Vi, aij, Bi; and b; are real coefficients,
I denotes the identity matrix, J denotes the Jacobian matrix fy,(y»), y» is an approximation
to y(t,), and each k; denotes an approximation to some piece of information about the exact
solution y(t). In 1995, Cheng Lirong and Liu Deguil® presented the s-stage parallel Rosenbrock
methods for solving (2.1)

i—1 i—1
(I — h’yJ)km = hf(yn + E Ozijkj,n_l) + hJ Z Bijkjn—1, ©=1,2,..,5,
. i=1 i=1 (2.3)
Yn+1 = Yn + Z bzkzn
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Note that here the condition 711 = Y22 = --- = 7ss = 7 is imposed. However, when parallel

processors are available, this condition is seems to be less desirable. Thus in order to make
full use of the elements of the coefficient matrix as free parameters so as to achieve higher
precision and better numerical stability properties, we relax the demand to construct a new
class of methods of the form

i—1 =1
(I — h’yiiJ)kin = hf(yn -+ Z ai]-kj,nfl) + hJ Z ﬁijkjynfl, 1=1,2,...,s,
j= j= (2.4)

s
Yn+1 = Yn + E bzkzny
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