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Abstract

This paper presents an analysis of the generalized Newton method, approximate New-
ton methods, and splitting methods for solving nonsmooth equations from Picard iteration
viewpoint. It is proved that the radius of the weak Jacobian (RGJ) of Picard iteration
function is equal to its least Lipschitz constant. Linear convergence or superlinear con-
vergence results can be obtained provided that RGJ of the Picard iteration function at
a solution point is less than one or equal to zero. As for applications, it is pointed out
that the approximate Newton methods, the generalized Newton method for piecewise C!
problems and splitting methods can be explained uniformly with the same viewpoint.

Key words: Nonsmooth equations, Picard iteration, Weak Jacobian, Convergence.

1. Introduction

Consider the following nonsmooth equations
F(z)=0 (1)

where F' : R"™ — R" is Lipschitz continuous. A lot of work has been done and is beng done
to deal with (1). It is basicly a generalization of the classic Newton method [8,10,11,14],
Newton-like methods|[1,18] and quasi-Newton methods [6,7]. As it is discussed in [7], the latter,
quasi-Newton methods, seem to be limited when applied to nonsmooth case in that a bound
of the deterioration of updating matrix can not be maintained without smoothness assumption
of F at solution points. Therefore, more efforts have been made to discuss the former. The
discussions are mainly on the local and global convergence under the assumption that F'is
semismooth.

An interesting discovery is that a majority of nonsmooth equations discussed in the recent
years are almost either piecewise C! or well structured. The former mainly originate from
nonlinear complementarity problems, variational inequality and nonlinear programming prob-
lems, see [4,12,15-17], while the latter from nonsmooth partial differential equations [5]. This
encourages one to extend discussions on some specific problems which are either more than
semismooth or well structured but non-semismooth.

In this paper, we are motivated to discuss these problems. We give a unified analysis on the
generalized Newton method, approximate Newton methods and splitting methods from Picard
iteration viewpoint.

In section 2, we simply review some basic definitions and results related to nonsmooth
equations. A kind of generalized norm is introduced for the convex set-valued family. In section
3, we set up a relationship between the Lipschitz constant and the radius of the weak Jacobian
of Picard iteration function. This is a generalization of the classic results in the smooth case. In
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section 4, we try to explain the approximate Newton methods, the generalized Newton method
for piecewise C'!' problems and the splitting methods from Picard iteration viewpoint.

2. Generalized Jacobian

we use || - || to denote 2-norm of vectors in R™ and induced norm of matrices in n x n matrix
space L(R™). We denote the set of points of R™ at which F is differentiable by Dp. We let
S(x,d) denote a closed ball in R™ with center z and radius 6.
We assume throughout that F' is Lipschitz continuous in R" in the sence that for every
x € R™, there exist L > 0, and § > 0, such that
I Fly) = F) IS Llly—=z| (2)

for all y,z € S(z,d). Here L is called Lipschitz constant of F at z.
According to the Rademacher theorem, F'is differentiable almost everywhere in R™, and the
generalized Jacobian of F at x was defined by Clarke [2] as follows:

OF (z) = conv] lim  VF(x;)].

z;—x,r;EDp

Here and later, VF(z) denotes the Jacobian of F at © € Dp, and ”conv” denotes convex hull.
Proposition 2.1. (Proposition 2.6.2, Clarke [2]) OF (x) is compact and upper semicontin-
uous in the sence that for every € > 0, there exists 0 > 0, such that for all y € S(z,9),

O0F (y) C OF () + B,

where B denotes an open unit ball in L(R™).
A useful subset of 0F (z) was defined by Qi[13] as follows:

WF(x) = lim  VF(x;)

zi—~w,zi€Dp
Here, we call it weak Jacobian. It is clear that
OF (x) = convW F (z)

Proposition 2.2. (Proposition 2.1[18]) W F(z) is compact and upper semicontinuous in
the sense that for every e > 0, there exists § > 0, such that for all y € S(z,0),

WF(y) CWF(x)+eB,

where B denotes an open unit ball in L(R™).

Now consider convex sets in L(R™). Let A, B be two convex sets in L(R™), « is a scalar,
define the operations

A+B=[c=a+b:a€ A be B
aA=[c=aa:ac€ 4.
Then, all these sets form a convex family with scalar multiplication and addition, we denote it
by I'. Taking an arbitrary element A € ', we define
| Afl=sup [la].
acA

We call || OF (x) || the radius of the generalized Jacobian of F' at x (RGJ in brief). Similarly,
we can define the norm of WF(z) by

|WF()[= sup |[W].
WEW F(x)

Proposition 2.3. For every x € R", || 0F (z) ||=|| WF(x) ||
Proof. Tt suffices to prove that

| OF (z) |<[| WF(z) [| -



