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Abstract

In this paper, some estimations of bounds for determinant of Hadamard product of
H-matrices are given. The main result is the following: if A = (a;;) and B = (b;;) are
nonsingular H-matrices of order n and H?:l aiibi; > 0, and Ay and B,k =1,2,---,n,
are the k x k leading principal submatrices of A and B, respectively, then
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where M(A;) denotes the comparison matrix of Ay.
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1. Introduction

Let R™*™ denote the set of m x n real matrices, S;" denote the set of n x n positive definite
real symmetric matrices. For A = (a;;) and B = (b;;) € R™*", the Hadamard product of A
and B is defined as an m x n matrix denoted by Ao B : (A o B);; = a;;b;j.

We write A > B if a;; > b;; for all 4,j. A real n x n matrix A is called a nonsingular
M-matrix if A = sI — B satisfied: s > 0,B > 0 and s > p(B), the spectral radius of B, let M,
denote the set of all n x n nonsingular M-matrices. Suppose A € R™ "™, its comparison matrix
M(A) = (my;) is defined by the following:

|aij|, ifi=j

mij = { o (1)
—|ai|, ifi#j

A real (or complex) n x n matrix A is called an H-matrix if its comparison matrix M(A) is a

nonsingular M-matrix, let H,, denote the set of all n x n nonsingular H-matrices.
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On the estimations of bounds for determinant of Hadamard product of matrices, we have
the following well-known result.
Oppenheim’s inequality: If A = (a;;) and B = (b;;) € S, then

n

det (Ao B) > (H a) - det (B) 2)
i=1
Lynn?l had proved that inequality (2) holds for M-matrices and Fielder and Ptak!®! given a
similar result when A is an M-matrix and B is a weakly diagonally dominant matrix. Jianzhou
Liu and Li Zhul'l improved Oppenheim’s inequality recently as following theorem:
Theorem 1. If A = (a;;) and B = (b;;) are nonsingular M-matrices, Ay and By,
k=1,2,---,n—1, are the k X k leading principal submatrices of A and B, respectively, then
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det (Ao B) > aj1byy kl:[z [bkk det (A1) + &t (Br1) (; o )] (3)

In this paper, we shall generalize Jianzhou Liu’s results and give an inequality similar to (3)

for nonsingular H-matrices.

2. Some Lemmas

In this section, we shall give some lemmas which shall be used in the following.

Lemma 1. If A and B € M,, then M(Ao B) € M,

Lemma 2. If A and B € H,, then Ao B € H,.

Proof. By the definition of Hadamard product and the definition of comparison matrix, we

can easily obtain the following equality:
M(Ao B)= M(M(A) o M(B)) (4)

If A and B € H,, then M(A) and M(B) € M,, and M(M(A) o M(B)) € M,, by Lemma 1,
that is: M(AoB) € M,,. So Ao B € H,,.

Lemma 30!, Let A = (ai;) € R™™ with a;; < 0 for all i # j;i,j = 1,2,---,n, then the
following conditions are equivalent:

1. A is a nonsingular M -matriz.

2. A has all positive diagonal elements, and there exists a positive diagonal matriz D such
that AD is strictly diagonally dominant.

3. All of the leading principal minors of A are positive.

From the definition of H-matrix and Lemma 3, we can easily prove the following result.

Lemma 4. A matriz A is nonsingular H-matriz if and only if there exists a positive diagonal
matriz D such that AD is strictly diagonally dominant.

Lemma 5. If A is a strictly diagonally dominant matriz with a; > 0,i=1,2,---,n, then

det A > det M(A) >0



