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Abstract

A = (a;;) € R™*™ is termed bisymmetric matrix if
Qij = Qj; = Qp—jt+1,n—it1, &6 J=1,2---n.

We denote the set of all n x n bisymmetric matrices by BSR™*".
This paper is mainly concerned with solving the following two problems:
Problem I. Given X,B € R"*™, find A € P, such that AX = B,
where P, ={Ae BSR""| zTAz >0, VzeR"}.
Problem II. Given A* € R™*", find A € Sg such that

A* — Al|p = min ||A* — A4
I IFa jrelgzll |7,

where || - || is Frobenius norm, and Sk denotes the solution set of problem I.

The necessary and sufficient conditions for the solvability of problem I have been
studied. The general form of Sg has been given. For problem II the expression of
the solution has been provided.
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1. Introduction

Inverse eigenvalue problem has widely been used in engineering. For example inverse
eigenvalue method is a useful means in vibration design and vibration control of flyer.
In resent years a serial of good conclussions have been made for inverse eigenvalue
problem [4]. Bisymmetric matrices have practical application in civil engineering and
vibration engineering. However, inverse problems of bisymmetric matrix have not be
concerned yet. In this paper we will discuss this problem.
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We denote the real n x m matrices space by R**™, and R" = R"*!, the set of all
matrices in R™*™ with rank r by R}*™, the set of all n x n orthogonal matrices by
OR™ "™, the set of all n x n symmetric matrices by SR™*", the column space, the null
space and the Moore-Penrose generalized inverse of a matrix A by R(A),N(A), A"
respectively, the identity matrix of order n by I,,, the Frobenius norm of A by ||A|r.

n m
We define inner product in space R"*™, (A, B) = tr(BTA) = Y ¥ aijbij, VA,BE€
j 1

i=1j=
R™ ™ Then R™ ™ is a Hilbert inner product space. The norm of a matrix produced

by the inner product is Frobenius norm.
Definition 1. A = (a;;) € R"*", if

Ajj = Gj; = Qp_j+1n—itl iy =1,2,---,n.

Then we term A as a bisymmetric matrix. The set of all bisymmetric matrices denoted

by BSR™*".

Let
k= [g], [x] is the maximum integer number that is not greater than x.  (1.1)
When n = 2k,

D:%(QZ _;Z>; (12)

and when n = 2k + 1,

. I, 0 I, 0o --- 1
D=—1|0 V2 0 |,S,=1|: - : : 1.3
7 K : : (1.3)

Sp 0 =5 1 -+ 0

It is easy verified that above D are orthogonal.
Definition 2. A € BSR™ " is termed bisymmetric nonnegative definite [positive
definite] if z1 Az > 0(> 0) for every nonzero = in R".
Let
P, ={A € BSR""| zTAz >0, VzeR"}.

Now we consider the following problems:
Problem I. Given X,B € R"*™, find A € P, such that

AX = B.
Problem II. Given A* € R™", find A € Sy such that

A* — Allp = min |A* — A
I IF felfsnE“ 7,

where Sg is the solution set of problem I.

At first, in this paper, we will discuss the geometric constrution of BSR™*"™. Then
we will give the necessary and sufficient conditions for the solvability of problem I and
the expression of the general solution of problem I, and prove that Sg is a closed convex
set. At last, we will prove that there exists an unique solution of problem II and give
expression of the solution for problem II.



