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Abstract

In this paper, the Crank—Nicholson 4+ component—consistent pressure correction
method for the numerical solution of the unsteady incompressible Navier—Stokes
equation of [1] on the rectangular half-staggered mesh has been extended to the
curvilinear half-staggered mesh. The discrete projection, both for the projection
step in the solution procedure and for the related differential-algebraic equations,
has been carefully studied and verified. It is proved that the proposed method is
also unconditionally (in At) nonlinearly stable on the curvilinear mesh, provided
the mesh is not too skewed. It is seen that for problems with an outflow bound-
ary, the half-staggered mesh is especially advantageous. Results of preliminary
numerical experiments support these claims.
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1. Introduction

Let us consider the unsteady incompressible Navier—Stokes equations (INSE)

ow L
¥ + (w - grad)w + grad p = Edw grad w (1.1)

divw =0 (1.2)

on a two—dimensional region 2 with boundary 092. Here w is the velocity vector; in
terms of its Cartesian components w = (u,v)’; p is the pressure. The initial condition
is given as

Wli—o =w’ on Q (1.3)

satisfying (1.2). We are concerned mainly with the solid wall boundary condition

w=wpg onJdQ satisfying ?{ wpds =0 (1.4)
o0

* Received November 19, 1997.

Y Supported by Projects 19472068 and 19772056 of the National Natural Science Foundation of
China and the Laboratory of Scientific and Engineering Computing of the Institute of Computational
Mathematics, the Chinese Academy of Sciences.



522 L.C. HUANG

but we will also briefly discuss the outflow boundary condition. Note the convection
term can also be written in conservative form (w - grad)w = div(ww), using (1.2).

The difficulty in the numerical solution of the above problem lies in that (1.1) and
(1.2) are partial differential equations with constraint; i.e. the system of equations is
not entirely evolutionary. The projection methods of [2], [3], and [4] have been widely
used and have proven to be most efficient for this type of problems. However, it is
not always very well understood and has caused a great deal of confusion, e.g. see [5],
[6], and [7] for discussions of the numerical boundary layers in pressure. For spatial
discretization, there are many finite element methods — the so—called mixed methods.
But for high Re unsteady complex flow simulation, the finite difference methods are
usually used. It may be surprising to those not in the immediate field that the finite
difference discretization is almost exclusively done on the staggered mesh of [8] for
practical computation. The reason is that on the half-staggered mesh or the general
mesh, the centered difference scheme (for grad p and div w) is not “regular” and the
numerical solution is not “smooth”, see [9] and [10], mostly the pressure solution can
be intractable.

Because many of the advantages of the staggered mesh are lost on its curvilinear
counterpart, see [11], we have directed our efforts toward the half-staggered mesh of
[12], see Fig. 1. This mesh retains some of the advantages of the staggered mesh and
does not need half-interval differencing on points adjacent to the boundary. Its main
advantage lies in that with both components of the velocity at the same point, their
coordinate transformation, the discretization of (1.2), and the formation of boundary
conditions become more intelligible. But the solution of the discrete Poisson equation
for pressure (or pressure correction) in the projection step becomes troublesome, in that
there is an added constraint for solution and in that the solution can have oscillations,
see [13] and [14]. We have shown in [15] that the added constraint is of no serious
consequences for many problems, and that the oscillations do not affect the discrete
gradient of p, which is of our only concern. Furthermore, for simulation of high Re
unsteady complex flow in rectangular regions, a fast solver for the discrete Poisson
equation with the most straightforward finite difference approximation of grad and div
on the half-staggered mesh has been developed in [16]. It has proven to be very efficient
in the numerical tests of [17] and [1]. We point out here that the half-staggered mesh
has been used quite successfully in [18], but with a different procedure for projection,
in which the divergence—free velocity is computed directly with a Galerkin approach.

We have chosen the pressure correction (PC) projection method of [4] because its
equation for the auxiliary velocity is consisitent with (1.1), and hence the boundary
condition (1.4) can be used. Also it retains the second order time accuracy of the
underlying difference scheme, say the Crank-Nicolson (CN) scheme. However with
the regular PC projection method, the “deviation” problem is sometimes encountered
in practical computation. In [1], it is explained that with spatial discretization on
a fized mesh, the INSE becomes a system of differential-algebraic equations (DAE).
For its solution to evolve along the correct branch, a consistency condition between
the components (here w and p) of the solution must be satisfied. The PC projection
method does not preserve this consisitency condition, and hence may lead to “deviation”



