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Abstract

We give a new justification of the linear membrane and flexural shell models.
We prove that the sequence of scaled energy functionals associated with the scaled
problem T'-converges to the energy functional associated with a two-dimensional
model. This two-dimensional model is a membrane or flexural one, depending on
the geometric and kinematic conditions. Then, a classical argument allows to give
a new proof of the convergence theorems recently obtained by P.G. Ciarlet, V.
Lods and B. Miara.
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Introduction

The deformations of an elastic body submitted to forces are governed by three-
dimensional mathematical equations. This means that the unknown, which is the vector
formed by the components of the displacement, depends on three variables. however,
when the elastic body is “thin” in one dimension, for instance when it is a shell, one
can use two-dimensional shell models, such as those of Naghdi, Koiter, Budiansky-
Sanders etc. Thus, the important point is to explain which model is the “good” one in
a given situation and why. Hence, an important aspect of the mathematical analysis in
elasticity consists in studying the validity of the two-dimensional equations to describe
the physical behavior of a three-dimensional body. This is what is called the justification
of the model.

Deriving lower-dimensional models can be achieved through a formal asymptotic
analysis. The method is the following: first, one has to make the “scalings” on the
unknown and the “right” assumptions on the forces in order to set the problem over a
fixed domain, i.e, a domain independent of the thickness €. Next, it is assumed that the
scaled three-dimensional displacement field obtained in this fashion can be expanded
in powers of the small parameter €. Finally, replacing this formal expansion in the
variational equations, one can identify the leadin term by equating to 0 the coefficients
of the powers of ¢.
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In the study of linearly elastic shells, the first contribution of that kind is due to [1].
Then, [2] pointed out the importance of the geometry of the shell: depending on the
geometric and kinematic conditions, the formal asymptotic analysis leads to identify
one of two distinct models: the “membrane” model or the “flexural” model. Thus, it
is not possible to derive these two models simultaneously for shells, unlike the case of
plates. For other works in this spirit, see [3-6].

Essentially, a two-dimensional model is considered justified when one can prove
convergence of the three-dimensional unknown to the leading term of the asymptotic
expansion, as the thickness € of the shell goes to zero. In the linear case, the articles
of [7, 8], [9] give the complete justification of the membrane and flexural models by
using the techniques of asymptotic analysis. For nonlinear membranes, such results
were obtained by [10], using I'-convergence and following the approach of [11].

Here, we give another method to obtain convergence theorems in the linear case
using ['-convergence theory. A similar approach was done for linearly elastic plates by
[12].

We study separately the membrane case and the flexural case. First, we recall the
main notations about the geometry of the shell, and we make appropriate scalings, in
order to define the scaled three-dimensional problem. Next, we prove the I'-convergence
of the energy functionals associated with the scaled three-dimensional problem to a
functional corresponding to a variational problem posed over a two-dimensional domain.
We then deduce the weak convergence of the displacements, the strong convergence
being obtained as in [7], [9].

1. The Three-Dimensional Shell Problem in Linearized Elasticity

We begin with geometric preliminaries. Throughout this work, Greek indices and
exponents (except €) belong to the set {1,2}, Latin indices and exponents (except
when used to index sequences) take their values in the set {1, 2, 3}, and we use the
summation convention on repeated indices and exponents.

Let w be a bounded, open and connected subset of R?, with a Lipschitz-continuous
boundary . We note y = (y,) a generic point of w, and J, := 0/0y, the partial
derivatives. let ¢ : @ — R> be an injective mapping, at least of class C3. We assume
that the two vectors

aq(y) == Oatp(y)

are linearly independent at all points y € @. They form the covariant basis of the
tangent plane to the surface S = ¢(w) at the point ¢(y); the two vectors a®(y))
defined by

a®(y) - aply) = 55
constitute the contravariant basis at this same point p(y). We also define the vector

3 a| X a2
a3 =a’ ;= ———,
|a,1 X a,2|



