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Abstract

This paper studies the geometric structure of nonlinear Schrédinger equation
and from the view-point of preserving structure a kind of fully discrete schemes is
presented for the numerical simulation of this important equation in quantum. It
has been shown by theoretical analysis and numerical experiments that such dis-
crete schemes are quite satisfactory in keeping the desirable conservation properties
and for simulating the long-time behaviour.
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1. Introduction

Many important differential equations of evolution type in physics and mechanics
have specific geometric structure. For instance, the Hamiltonian systems in classical
mechanics, the Schrodinger equation in quantum, the Korteweg-de Vries and Klein-
Gordon equations of nonlinear waves have symplectic structure, i.e. the evolutions in
phase spases of these equations are canonical mappings. To simulate convincingly the
dynamic behaviour of differential equations, it is very natural to look for discretized
systems which preserve as much as possible the geometric structure and symmetries of
the original continuous systems. Such discretization methods would be more satisfac-
tory than the conventional methods in keeping the desirable conservation properties and
simulating the long-time and global behaviour. In recent 10 years, studies on numerical
methods from the view-point of geometry have become more and more popular. Since
1984, the symplectic methods initiated by Feng K.[I for computation of Hamiltonian
systems have been studied systematically by Qin M.Z.[2, Sanz-Serna J.M.[*l, Channel
P.J. and Scovel C.14, etc.. Huang M.Y. in [5] and [6] discussed the structure preserv-
ing methods for nonlinear wave equation and Korteweg-de Vries equation, where the
discretizations are related to the spectral or finite element approximations of partial
differential equations and used to compute the time periodic solutions and the solitary
waves respectively.

In this paper, we shall discuss the discrete approximation of Schrodinger equation,
which preserves the geometric structure and desirable properties of the continuous
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system. As a model, here we consider the following nonlinear Schrodinger equation
with one space variable
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where ¢ = +/—1, unknown function u = ¢+ i1 is assumed to be periodic in z or rapidly

— |u*u =0, (1.1)

decay as x — Fo0.
To study the geometric structure of equation (1.1), we introduce the functional by
integral
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where 0 < L < +oc when the periodic boundary condition with period 2L is considered

and L = oo when the rapidly decay boundary condition is considered, then (1.1) is
equivalent to the following system with unknown functions ¢ and 1):
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where W, E respresent the variations of H(u) with respect to ¢ and ¢ respectively.

From (1.2) we see that the equation (1.1) has a Hamiltonian (Symplectic) structure.
It is easy to show that the solution u(t) = wu(t,z) of (1.1) or (1.2) has the following
conservation properties:
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I (u(t)) = / (¢* + 9*)dz = Const. (Total Mass of particles);
~L
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Ir(u(t)) = . Ypydr = Const. (Total momentum);

I3(u(t)) = H(u(t)) = Const. (Total energy).

In long time simulation problems, to maintain these conservation properties is consid-
ered to be particularly important.

2. Discrete Approximation

In this section, a properly discretization of equation (1.1) with periodic boundary
condition will be introduced based on formulation (1.2).
Assume that
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ie. &(x), j = 1,2,--- are eigenfunctions of the operator —0,, and puj;, j = 1,2,---
the corresponding eigenvalues, and consider {{;(x)} to be a ortho-normalized basis of



