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INTERIOR ERROR ESTIMATES FOR NONCONFORMINGFINITE ELEMENT METHODS OF THE STOKES EQUATIONS�Xiao-bo Liu(Department of Mathematis and Computer Siene Clarkson University Box 5815, Potsdam,NY 13699-5815, USA)AbstratInterior error estimates are derived for nononforming stable mixed �nite ele-ment disretizations of the stationary Stokes equations. As an appliation, interioronvergenes of di�erene quotients of the �nite element solution are obtained forthe derivatives of the exat solution when the mesh satis�es some translation in-variant ondition. For the linear element, it is proved that the average of thegradients of the �nite element solution at the midpoint of two interior adjaenttriangles approximates the gradient of the exat solution quadratially.Key words: Interior error estimates, Nononforming element, Stokes equations.1. IntrodutionInterior error estimates for �nite element disretizations (onforming) were �rstintrodued by Nitshe and Shatz[14℄ for seond order salar ellipti equations in 1974.They proved that the loal auray of the �nite element approximation is boundedin terms of two fators: the loal approximability of the exat solution by the �niteelement spae and the global approximability measured in an arbitrarily weak Sobolevnorm on a slightly larger domain. Sine then, interior estimates of this nature havebeen obtained by Douglas, Jr. and Milner for mixed methods of the seond ordersalar ellipti equations[8℄, Douglas, Jr., Gupta, and Li for the hybrid method[7℄, byGastaldi for a family of elements for the Reissner-Mindlin plate model[12℄, by Arnoldand Liu for onforming �nite element methods for the Stokes equations[1℄, and by Liu fornononforming methods for the seond order ellipti equations[13℄. For a omprehensivereview on this subjet, see [17℄.Reently, some quite interesting appliations of interior estimates have been foundin the areas of a posteriori error analysis and adaptive mesh re�nement. In 1988Eriksson and Johnson[11℄ introdued two a posteriori error estimators based on loaldi�erene quotients of the numerial solution. Their analysis was based on the inte-rior onvergene theory in [14℄ and [15℄. In 1991, Babu�ska and Rodr��guez[2℄ studiedthe estimators of Zhu and Zienkiewiz[19℄, [20℄ by using the interior estimate results ofBramble and Shatz[15℄. For other appliations in this diretion, please refer to [9℄, [10℄� Reeived November 6, 1995.



476 X.B. LIUand [3℄. Through these investigations, it is now widely believed that the asymptotiexatness of a posteriori estimators essentially depends on some kind of superapproxi-mation property of the �nite element method. Interior error estimates, however, o�era standard approah to derive interior superonvergenes.The aim of this paper is to establish interior error estimates for nononforming�nite element approximations to solutions of the Stokes equations. Note that nonon-forming methods are attrative for the Stokes problems for two reasons: (1) the inf-supondition is easy to satisfy; (2) divergene-free nodal bases an be onstruted. Inaddition, sine the pressure an be eliminated �rst (when disontinuous funtions areused to approximate the pressure), the veloity an be found through solving a positivesystem and thereafter, some preonditioned multigrid methods may be inorporatedfor onstruting fast solvers.The method used here and the struture of this paper losely follows that in [1℄.Setion 2 presents notations and preliminaries. Setion 3 introdues hypotheses forthe �nite element spaes, whih atually apply for both nononforming and onformingmethods. In Setion 4, we introdue the interior equations and derive some basiproperties of their solutions. Setion 5 gives the preise statement of our main resultand its proof. In Setion 6 we prove interior onvergenes of di�erene quotients of the�nite element solution to the derivatives of the exat solution when the �nite elementspae is de�ned over meshes with ertain translation invariant property. An interiorsuperonvergene is obtained as an example appliation.2. Notations and PreliminariesLet 
 denote a bounded domain in R2 and �
 its boundary. We shall use the usualstandard L2-based Sobolev spaes Hm = Hm(
), m 2 Z, with the norm k�km;
. Reallthat for m 2 N, H�m denotes the normed dual of ÆH m, the losure of C10 (
) in Hm.We use the notation (�; �) for both the L2(
)-innerprodut and its extension to a pairingof ÆH m and H�m. If 
 =[j 
j for some disjoint open sets 
j, then let Hmh (
) = fu 2L2(
) and uj
j 2 Hm(
j), for all jg with the norm kukhm;
 = �Xj kuk2m;
j�1=2. If X isany subspae of L2, then X̂ denotes the subspae of elements with average value zero.We use boldfae type to denote 2-vetor-valued funtions, operators whose values areetor-valued or tensor-valued funtions, and spaes of vetor-valued funtions. This isillustrated in the de�nitions of the following standard di�erential operators:div� = ��1=�x+ ��2=�y; grad p = � �p=�x�p=�y � ; grad � = � ��1=�x ��1=�y��2=�x ��2=�y � :For any funtion � that is di�erentiable on eah 
i where 
 =[i 
i, a family of disjointopen sets 
i, we de�ne the pieewise version (with notation divh) of its divergene tobe the funtion obtained by omputing div� element-wise. The pieewise version of thegradient operator an be de�ned similarly and is denoted by gradh.


