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Abstract
We study the Fredholm integro-differential equation

+oo
D2 o(z) + / k(e — y)o()dy = g(x)

— 0o

by the wavelet method. Here o(z) is the unknown function to be found, k(y) is
a convolution kernel and ¢(z) is a given function. Following the idea in [7], the
equation is discretized with respect to two different wavelet bases. We then have
two different linear systems. One of them is a Toeplitz-Hankel system of the form
(H, + T,)x = b where T, is a Toeplitz matrix and H,, is a Hankel matrix. The
other one is a system (B,, + C,)y = d with condition number x = O(1) after a
diagonal scaling. By using the preconditioned conjugate gradient (PCG) method
with the fast wavelet transform (FWT) and the fast iterative Toeplitz solver, we
can solve the systems in O(nlogn) operations.
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1. Introduction

In this paper, we study the Fredholm integro-differential equation

Alola)) = DZota) + [ ka — oty = g(x) (1

by the wavelet method. The applications of the equation in image restoration could be
found in [10]. For the history of numerical methods for the Fredholm integro-differential
equations, we refer to [4]. Following the idea in [7], the equation is discretized with
respect to two different orthonormal wavelet bases By and By of LQ(R). The By comes
from the father wavelet ¢(z) and the By comes from the mother wavelet ¢ (z). After
discretizing of the equation with respect to By and Bs on a finite interval, we then have
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two different n-by-n linear systems. One of them is a Toeplitz-Hankel system of the
form

(Hn + Tn)fl7 =b (2)

where T), is a Toeplitz matrix and H,, is a Hankel matrix. The other one is a system
(Bn +Cn)y =d (3)
with condition number
K(D,'*(Bn + C,)D,'?) = 0(1) (4)

after a diagonal scaling D,,. The relation between H,, +T;,, and B, + C,, is B,, + C,, =
Wy (H, + T,)W, ' where W, is the wavelet transform matrix between B; and Bs.

We then solve (2) by solving its equivalent form (3) with y = W,z and d = W,,b.
For solving (3), we use the PCG method with the diagonal preconditioner D,,. The
condition number of the preconditioned system is, by (4),

KDy (Bu + Cn)) = 5(D,? (B + Co) D, %) = O(1).

n n

When the PCG method is applied to solve the preconditioned system, the convergence
rate will be linear, see [5]. By using the FWT, see [2], and fast iterative Toeplitz solver,
see [1] and [9], we can solve the system (B, + Cp)y = d and also (H, + Ty,)z = b in
O(nlogn) operations.

2. Discretization of Fredholm Equation

The Fredholm integro-differential equation is given as follows, Ac = g, where A
is defined by (1), g € L?(R) and k(z — y) € L?(R) is symmetric and positive, i.e.,
k(z —y) = k(y — ) > 0. For solving the equation, we need to find o € C3*(R) such
that (1) is to be satisfied. The equivalent variational form of (1) is: find o € H{(R)
such that

B(o,p) = F(p) (5)
for Vi € H§(R). Here B(o,u) = By(o,u) + Bi(o, ) with

+0o0
Bo(o.p) = [ Dio@)Dip(a)ds.

B = [ [ ke - wownta)dyds

and

+o0

P = [ glayula)ds.

— 00
We assume that B(o, u) is a continuous elliptic bilinear form on H§(R) x Hf(R), i.e.,
there exist two constants 8 > « > 0, such that OLHO’H%{S < B(o,0) and B(o,u) <
Bllollm; |l mg - For instance, when s =0 (or s = 1) and +oo0 > C > k(z —y) > ¢ > 0,
then obviously, B(o,u) is a continuous elliptic bilinear form on L?(R) x L?(R) (or
HY(R) x HL(R).



