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CORRECTION METHODS FOR STEADY INCOMPRESSIBLEFLOWS�1)Jian Li(State Key Laboratory of Sienti� and Engineering Computing, ICMSEC, Chinese Aademyof Sienes, Beijing 100080, China)AbstratCorretion methods for the steady semi-periodi motion of inompressible uidare investigated. The idea is similar to the inuene matrix to solve the lak of vor-tiity boundary onditions. For any given boundary ondition of the vortiity, theoupled vortiity-stream funtion formulation is solved. Then solve the governingequations with the orretion boundary onditions to improve the solution. Theseequations are numerially solved by Fourier series trunation and �nite di�erenemethod. The two numerial tehniques are employed to treat the non-linear terms.The �rst method for small Reynolds number R = 0 � 50 has the same results asthat in M. Anwar and S.C.R. Dennis' report. The seond one for R > 50 obtainsthe reliable results.Key words: Inompressible ow, vortiity, stream funtion, numerial solution.1. IntrodutionFor semi-periodi inompressible uid ows, S.C.R. Dennis and o-workers[1�4℄ solvethe vortiity-stream funtion formulation of the governing equations by the series trun-ation and �nite di�erene method. Sine no boundary ondition for the vortiity, theypropose the vortiity integral onditions based on Green identity. These methods aree�etive. But the vortiity integral onditions are impliit. In this paper, the orre-tion method with expliit boundary onditions is proposed. We investigate the steadytwo-dimensional semi-periodi ow near an in�nite array of moving plane walls. Thisexample is developed by M. Anwar and S.C.R. Dennis[3℄. They get the numerial so-lutions by Fourier series and �nite-di�erene approximations. Their series trunationmethod loses e�etiveness for R > 50. In the omputations by the orretion method,we adopt the two numerial tehniques to treat the non-linear terms for the variousranges of R. The �rst method is expliit. The vortiity transport equation with givenboundary onditions and the Poisson equation for the stream funtion with Dirihletboundary onditions are solved respetively. Then solve a homogeneous problem toorret the solutions. The numerial results for R = 0� 50 are the same as that in [3℄.The seond method is to solve the oupled vortiity-stream funtion formulation with�Reeived Otober 21, 1996.1)This work is supported by the National Nature Siene Foundation of China.



420 J. LIany given boundary ondition of the vortiity. Then again solve the governing equa-tions with the orretion boundary onditions to improve the solution. The numerialresults for R > 50 are reliable. Sine the expliit boundary ondition of the vortiity,di�erene equation of the oeÆients of Fourier series an be solved by diret methodin expliit method. This saves the omputational work.2. Governing EquationsThe vortiity-stream funtion formulation of the steady state inompressible ow isas follows, ( r2� = R �� �y ���x � � �x ���y� ;r2 = ��; (2.1)where  and � are the dimensionless stream funtion and vortiity respetively, R isthe Reynolds number.We onsider the example of steady semi-periodi ow as in [3℄. The ow is gen-erated by the motion of an in�nite array of walls along the y-diretion. The veloityomponents of the moving wall are u = 0, v = � sin y, (�1 � y � 1). Sine the owis periodi and antisymmetrial for y, the boundary onditions are = 0; � �x = sin y; for x = 0;� ! 0;  ! 0; as x!1; = � = 0; for y = 0 and y = �:3. Method of Corretion SolutionWe expand � and  as Fourier series with respet to y,8>><>>: �(x; y) = 1Pn=1 gn(x) sinny; (x; y) = 1Pn=1 fn(x) sinny:By substituting the above series into (2.1), we an get a system of di�erential equationsfor Fourier oeÆients gn and fn,( g00n � n2gn = rn; n = 1; 2; � � � ;f 00n � n2fn = �gn; n = 1; 2; � � � ; (3.1)wherern = R2 1Xp=1f(jn� pj fjn�pj � (n+ p)fn+p)g0p � p(f 0n+p + sgn(n� p)f 0jn�pj)gpg;and sgn(n� p) denotes the sign of (n� p), with sgn(0) = 0. The boundary onditionsin terms of fn and gn are fn(0) = 0, f 0n(0) = Æn, fn(1) = 0, gn(1) = 0, n = 1; 2; � � �,where Æ1 = 1, Æn = 0, n = 2; 3; � � �.


