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A NONLINEAR GALERKIN METHOD WITH VARIABLEMODES FOR KURAMOTO-SIVASHINSKY EQUATION�1)Yu-jiang Wu(Department of Mathemati
s, Shanghai University, Jiading, Shanghai 201800, China;Department of Mathemati
s, Lanzhou University, Lanzhou 730000, China)Abstra
tThis arti
le proposes a kind of nonlinear Galerkin methods with variable modesfor the long-term integration of Kuramoto-Sivashinsky equation. It 
onsists of�nding an appropriate or best number of modes in the 
orre
tion of the method.Convergen
e results and error estimates are derived for this method. Numeri
alexamples show also the eÆ
ien
y and advantage of our method over the usualnonlinear Galerkin method and the 
lassi
al Galerkin method.Key words: Kuramoto-Sivaskinsky equation, Nonlinear Galerkin method, Approx-imation, Convergen
e 1. Introdu
tionThe nonlinear Galerkin method was introdu
ed by Marion and Temam[4℄, whi
his stemmed from the theory of inertial manifolds and dynami
al system theory. The
onsiderable in
rease in the 
omputing power during last years makes it possible forthe mathemati
ians to solve numeri
al problems for approximating various dissipativeevolution equations on large interval of time. Indeed, the nonlinear Galerkin methodhas proven to be a powerful tool for su
h problems (See [9℄, [11℄ and referen
es therein).Re
ently, this method has been applied to the long time integration of Kuramoto-Sivashinsky equation[12℄. Thanks to a newly established inequality for the nonlinearterm of Kuramoto-Sivashinsky equation, we 
an extend the method to a nonlinearGalerkin method with variable modes. Here the method involves a 
hangeable numberfor the small-s
ale 
omponents zs = zs(m), when the unknown fun
tion is u � um + zs.After the analysis of error estimates we give an optimal value of s or ! = m+ s whi
hredu
es the order of the error of the method to the lowest.This paper is organized as follows: Se
tion 2 
ontains the des
ription of the equationand some preliminary results. In Se
tion 3 we des
ribe the modi�
ation of nonlinearGalerkin method with variable modes and prove su

essively the 
onvergen
e of themethod. In Se
tion 4 we state and prove the error estimates of the method and givethe possible minimummodes for the method. Finally, in Se
tion 5 we make 
omparisonsof various numeri
al 
omputations for two examples whi
h show a signi�
ant gain in
omputing time for our method.� Re
eived O
tober 5, 1995.1)The proje
t is supported partially by the S
ien
e Foundation of the State Edu
ation Commissionof China.



244 Y.J. WU2. The Equation and Its Fun
tional SettingThe Kuramoto-Sivashinsky equation with an initial 
ondition and a periodi
 bound-ary 
ondition reads as follows (with dimension= 1 and period= l):8>>><>>>: �u�t + �4u�x4 + �2u�x2 + u�u�x = 0 0 < x < l; t > 0u(x; 0) = u0(x) 0 � x � lu(x; t) = u(x+ l; t) t � 0 (2.1)(2.2)(2.3)For the fun
tional setting of the equation, we 
an rewrite this partial di�erentialequation into an abstra
t evolution equation in a Hilbert spa
e H with s
alar produ
t(�; �) and norm j � j. In this 
ase, we have H = fuju 2 L2(0; l), u(0; t) = u(l; t) = 0g.Thus the equations (2.1){(2.3) be
ome8<: dudt +Au+B(u) + Cu = fu(0) = u0 (2.4)(2.5)Here, we set A = �4�x4 , B(u) = u�u�x andCu = 8>><>>: �2u�x2 l < 2��2u�x2 + ��u�x + �0u l � 2�f = ( 0 l < 2���(4) � �00 � ��0 l � 2�where � = �(x) is a fun
tion given in [5℄ to keep the 
oer
ivity property of the operatorA+ C.Sin
e A�1 is 
ompa
t and self-adjoint, there exists an orthonormal basis of H whi
h
onsists of the eigenve
tors of A: Awj = �jwj , 0 < �1 � �2 � � � �, �j !1 as j !1.Given another Hilbert spa
e V endowed with s
alar produ
t ((�; �)) and norm k � k,V = H2p (0; l) \H. We denote the domain of the operator A by D(A) = H4p(0; l) \H.And we know that B(u) = B(u; u) is a bilinear operator from V � V into V 0, C is alinear operator from V into H and f 2 H.De�ne a trilinear form b on V by b(u; v; w) = hB(u; v); wiV 0;V 8u; v; w 2 V , were
all the following well-known properties:b(u; u; u) = 0 8u 2 V (2.6)jb(u; v; w)j � 
1juj1=2kuk1=2kvkjwj1=2kwk1=2 8u; v; w 2 V (2.7)jCuj � 
2kuk 8u 2 V (2.8)jB(u; v)j � 
3juj1=2kuk1=2kvk1=2jAvj1=2 8u 2 V; v 2 D(A) (2.9)jB(u; v)j � 
4juj1=2jAuj1=2kvk 8u; v 2 D(A) (2.10)jB(u; v)j � 
5�1 + log jAuj2�1kuk2�1=2kukkvk 8u 2 D(A); v 2 V (2.11)


