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Abstract

This article proposes a kind of nonlinear Galerkin methods with variable modes
for the long-term integration of Kuramoto-Sivashinsky equation. It consists of
finding an appropriate or best number of modes in the correction of the method.
Convergence results and error estimates are derived for this method. Numerical
examples show also the efficiency and advantage of our method over the usual
nonlinear Galerkin method and the classical Galerkin method.
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1. Introduction

The nonlinear Galerkin method was introduced by Marion and Temam|[4], which
is stemmed from the theory of inertial manifolds and dynamical system theory. The
considerable increase in the computing power during last years makes it possible for
the mathematicians to solve numerical problems for approximating various dissipative
evolution equations on large interval of time. Indeed, the nonlinear Galerkin method
has proven to be a powerful tool for such problems (See [9], [11] and references therein).

Recently, this method has been applied to the long time integration of Kuramoto-
Sivashinsky equation[12]. Thanks to a newly established inequality for the nonlinear
term of Kuramoto-Sivashinsky equation, we can extend the method to a nonlinear
Galerkin method with variable modes. Here the method involves a changeable number
for the small-scale components z; = z,(;,), when the unknown function is u ~ um + zs.
After the analysis of error estimates we give an optimal value of s or w = m + s which
reduces the order of the error of the method to the lowest.

This paper is organized as follows: Section 2 contains the description of the equation
and some preliminary results. In Section 3 we describe the modification of nonlinear
Galerkin method with variable modes and prove successively the convergence of the
method. In Section 4 we state and prove the error estimates of the method and give
the possible minimum modes for the method. Finally, in Section 5 we make comparisons
of various numerical computations for two examples which show a significant gain in
computing time for our method.
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2. The Equation and Its Functional Setting

The Kuramoto-Sivashinsky equation with an initial condition and a periodic bound-
ary condition reads as follows (with dimension= 1 and period= [):

ou 0w 0% ou

EJF@JF@JFU%_O O<z<l, t>0 (2.1)
u(z,0) = ug(x) 0<z <l

u(z,t) =u(z +1,t) t>0

For the functional setting of the equation, we can rewrite this partial differential
equation into an abstract evolution equation in a Hilbert space H with scalar product
(-,+) and norm |- |. In this case, we have H = {ulu € L?(0,1), u(0,t) = u(l,t) = 0}.
Thus the equations (2.1)—(2.3) become

dd—u-l-Au-l-B(u)—I—Cu:f (2.4)
(to) B (2.5)
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where ¢ = ¢(z) is a function given in [5] to keep the coercivity property of the operator
A+C.

Since A~! is compact and self-adjoint, there exists an orthonormal basis of H which
consists of the eigenvectors of A: Aw; = Ajw;, 0 < Ay < Xg <---, X\j = 00 as j — oo.

Given another Hilbert space V' endowed with scalar product ((+,-)) and norm || - ||,
V = H}(0,l) N H. We denote the domain of the operator A by D(A) = H;l(O,l) NH.
And we know that B(u) = B(u,u) is a bilinear operator from V x V into V', C is a
linear operator from V into H and f € H.

Define a trilinear form b on V' by b(u,v, w) = (B(u,v), w)y' v Yu,v,w € V, we
recall the following well-known properties:

bu,u,u) =0 YueV (2.6)

[b(u, v, w)| < exful a2 oll[w] 2 w] VY, v,w € V (2.7)

|Cu| < collul] Yu eV (2.8)

|B(u,v)| < eslul'?||ul|'/?||v]]'/?|Av|'/?  Yu e V,v € D(A) (2.9)

|B(u,v)| < calul'?|Au|?||v|| Vu,v € D(A) (2.10)
2

|B(u,v)| < C5(1 + log>\|f|1|z||2)1/2||u||||v|| Yu € D(A),v €V (2.11)



