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Abstract

This paper extendes the results by E.M. Kasenally[7] on a Generalized Mini-
mum Backward Error Algorithm for nonsymmetric linear systems Ax = b to the
problem in which pertubations are simultaneously permitted on A and b. The
approach adopted by Kasenally has been to view the approximate solution as the
exact solution to a perturbed linear system in which changes are permitted to
the matrix A only. The new method introduced in this paper is a Krylov sub-
space iterative method which minimizes the norm of the perturbations to both the
observation vector b and the data matrix A and has better performance than the
Kasenally’s method and the restarted GMRES method[12]. The minimization prob-
lem amounts to computing the smallest singular value and the corresponding right
singular vector of a low-order upper-Hessenberg matrix. Theoratical properties of
the algorithm are discussed and practical implementation issues are considered.
The numerical examples are also given.
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1. Introduction

An important aspect of any iterative method for approximating the solution of a

linear system

Ax = b, (1.1)

where A is an n×n real nonsymmetric matrix and b is an n-vector, is to decide at what

point to stop the iteration. We customarily use the residual error as a stopping condi-

tion. The residual error rm = b−Axm can be viewed as a perturbation to the vector b

such that the approximate solution is an exact solution of the perturbed linear system

Ax = b + δ, in which changes are permitted to the vector b only. The GMRES algo-

rithm is based on classical Krylov subspace techniques and computes an approximate

solution restricted to an affine space while minimising the backward perturbation norm

of the vector b. From this backward error analysis of view E.M. Kasenally has viewed

the approximate solution as an exact one of the perturbed linear system (A−∆)x = b,
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in which changes are permitted to the matrix A only. The Krylov subspace algorithm

GMBACK proposed by Kasenally[7] computes an approximate solution restricted to an

affine space while minimizing the backward perturbation norm of the matrix A. In this

paper we view the approximate solution as an exact solution of the perturbed linear

system (A − ∆)x = b + δ, in which changes are simultaneously permitted on matrix

A and b[1,9,10]. A new Krylov subspace algorithm TGMBACK, which computes an

approximate solution restricted to an affine space and minimizing the backward per-

turbation norm of the matrix A and vector b is presented. This minimization problem

amounts to computing the smallest singular value and the corresponding right singu-

lar vector of a low-order upper Hessenberg matrix. The advantage for considering the

algorithms which minimize the backward error is that there is often some uncertainty

in the data A and b of the original linear systems and we can compare the backward

error with the size of the uncertainty. Moreover, we found from numerical examples

that the new method has better performance than Kasenally’s method and restarted

GMRES method.

The outline of this paper is as follows. Section 2 gives a backward error analysis for

any iterative method for solving linear systems. The TGMBACK algorithm is intro-

duced in Section 3. Some practical implementation issues and the numerical examples

are presented in Section 4 and Section 5, respectively.

2. Backward Error Analysis for Iterative Methods

Consider the linear system in (1.1), where A is a large nonsymmetric matrix. Let

{xm} be a sequence of approximate solutions produced by any iterative method. We

first compare the residual error rm ≡ b−Axm with the minimum backward error ∆min

in matrix A which satisfies ‖∆min‖F = min{‖∆‖F : (A − ∆)xm = b}.
Theorem 2.1. Let xm be an approximate solution of the linear system (1.1) and

∆min be the minimum backward error ∆ in the matrix A such that (A − ∆)xm = b.

Then

‖∆min‖F = ‖rm‖2/‖xm‖2, (2.1)

where ‖.‖F is the Frobenious norm.

Proof. The residual equation

rm = b − Axm

can be rewritten as follows
(
A +

rmxT
m

‖xm‖2
2

)
xm = b

which implies that

‖∆min‖F ≤ ‖rmxT
m/‖xm‖2

2‖F = ‖rm‖2/‖xm‖2. (2.2)

On the other hand, we have

(A − ∆min)xm = b


