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Abstract

This paper deals with the approximate solution of the Fredholm equation u−
TKu = f of the second kind from a probabilistic point of view. With Wiener type
measures on the set of kernels and free terms we determine statistical features of the
approximation process, i.e., the most likely rate of convergence and the dominating
individual behavior. The analysis carried out for a kind of Galerkin-like method.
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1. Introduction

Quantitative probabilistic analysis was carried out for several numerical problems.
For a systematic survey, we refer to Traub et al. (1988) and references therein. Smale
(1985) gave the first quantitative analysis for concrete measure. He expected that
the approach there might lead to a more systematic way of analysing for the cost of
numerical algorithms. Heinrich (1991) continued this line and gave the first quantitative
analysis for concrete measures and algorithms for integral equation of the second kind.
There, the analysis was carried out for the Galerkin method and the iterated Galerkin
method. It is natural to ask whether other numerical problems can be analyzed from
this point of view. In this paper we get counterparts for a kind of Galerkin-like method,
which was proposed by Schock (1971). For brevity, later on, it was called Q-method
(see, e.g., Schock (1982)). For a more precise discussion of relation between Q-method
and Galerkin method and iterated Galerkin method we refer to Schock (1982).

Finally, we briefly outline the contents of this paper. Section 2 reviews some basic
facts about Gaussian measures. Section 3 deals with the main problem in terms of
general Banach spaces and Gaussian measures. Section 4 specifies our main problem
and formulates the principal results. Section 5 and 6 are devoted to the proofs of the
principal results.
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2. Preliminaries on Gaussian Measures

We consider only Banach spaces over the field of reals throughout this paper. Given
Banach spaces X and Y we let L(X, Y ) denote the spaces of all bounded linear operators
T from X to Y , equipped with the operator norm ‖T‖. K(X, Y ) is the space of compact
operators, and we write L(X) and K(X) if X = Y . X∗ stands for the dual space of
X,B(X) is the σ-algebra of all Borel subsets of X. The symbol 〈, 〉 is used for the
duality between X and X∗, while (, ) always denotes inner products. If X = H is a
Hilbert space, we identify X∗ with H in the usual way, so that 〈, 〉 and (, ) coincide. For
x∗ ∈ X∗, y ∈ Y , x∗ ⊗ y ∈ L(X, Y ) denotes the operator defined by (x∗ ⊗ y)(x) = 〈x,
x∗〉y.

Now we list some basic notions and facts about Gassian measures, the emphasis
laid on the operator theoretic aspect. A Gaussian measure on a Banach space X is a
Radon probability measure µ such that each x∗ ∈ X∗ is a symmetric Gaussian random
variable on (X, µ) (which may be degenerate, that is, = 0 almost everywhere). We
shall consider only symmetric, i.e., mean zero Gaussian measures. For a Hilbert space
H we let γH denote the standard Gaussian cylindrical probability (see [Kuo (1975)],
[Pietsch (1980)]). For T ∈ L(H, X) let

Eγ(T ) = sup
F⊂H

dimF<∞

∫

F
‖Th‖dγF (h), (1)

and let Πγ(H, X) denote the set of all T ∈ L(H, X) with Eγ(T ) < ∞. Eγ is a norm on
Πγ(H, X) turning it into a Banach space. It is easily checked that

‖T‖ ≤ (π/2)1/2Eγ(T ). (2)

For a further Hilbert space H0, a Banach space X0, S ∈ L(H0,H) and U ∈ L(X, X0),

Eγ(UTS) ≤ ‖U‖Eγ(T )‖S‖, (3)

(it follows from [Linde and Pietsch (1974), Lemma 2]). Let Rγ(H, X) be the closure of
the finite rank operators in Πγ(H, X). For T ∈ L(H, X), let TγH denote the cylindrical
probability measure induced on X by T , that is, TγH = γH(T−1(B)) for cylindrical sets
B. Now T ∈ Rγ(H, X) if and only if TγH has an extension T̃γH to B(X) which is a radon
measure (such an extension is unique). So T ∈ Rγ(H, X) implies that T̃γH is Gaussian.
Conversely, If µ is a Gaussian measure on X, there is a separable Hilbert space H

and an injection J ∈ Rγ(H, X) with µ = J̃γH . H and J are essentially unique (up to
isometries). Note that (J,H, X) is then an abstract Wiener space (see [Kuo(1975)]). If
µ = T̃γH , T ∈ Rγ(H, X), then Cµ = TT ∗ is the covariance operator of µ, the closure of
ImT is the support of µ, and

Eγ(T ) =
∫

X
‖x‖dµ(x). (4)

These facts can be found in [Kuo (1975), Linde et al (1974), Traub et al (1988)]. If
X = G is a Hilbert space, then Rγ(H, G) coincides with the class of Hilbert-Schmidt


