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Abstract

In this paper, first, we present the comparison theorem and the (general-
ized) Stein-Rosenberg theorem for the GMPOR method, which improves some
recent results[9,11,13]. Second, we also give the convergent theorem of the GMPOR
method, which generalizes the corresponding result of [9]. Finally, we provide the
real interval such that the generalized extrapolated Jacobi iterative method and
the generalized SOR methods simultaneously converge, one of the main results in
[1] is extended.
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1. Introduction

Recently, many mathematical literatures have provided some new iterative meth-
ods for solving the linear system. Kuang[2] presented a two-parameter iterative method
called TOR method, which is effective to give the numerical solution of partial dif-
ferential equations. Wang[10] extended the TOR method to the GTOR methed and
improves some results of [3, 11, 12]. In [5], Li also discussed the GTOR method, and
extended the corresponding results of [10, 11]. Recently, Song and Dai[9] presented
the multi-parameters overrelaxation (MPOR) method, whose specific cases involve the
iterative methods mentioned as above. Now, let us make a generalization of the MPOR
method.

Let Ax = u, (1.1)

where A = D −
k∑

i=1

Ei − F , and D is a nonsingular matrix. Then the generalized

multi-parameters overrelaxation (GMPOR) method can be defined by

xm+1 = L(a1, · · · , ak; b)xm + v, m = 0, 1, · · · , (1.2)

where x0 is an initial approximation,

v =
(
D −

k∑

i=1

aiEi

)−1
bu
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and

L(a1, · · · , ak; b) =
(
D −

k∑

i=1

aiEi

)−1[
(1− b)D +

k∑

i=1

(b− ai)Ei + bF
]
, (1.3)

which is called the GMPOR iteration matrix, where ai i = 1, · · · , k and b are inde-
pendent parameters, D is nonsingular matrix, Ei, i = 1, · · · , k and F are any matrix
(In [9] D, E and F respectively nonsingular block diagonal, strictly lower and upper
triangular matrices).

Notice that for specific value of the parameters ai and b, the GMPOR method
reduces to the following well-known methods:

L(0; 1) = LGJ , the iteration matrix of the GJ method (generalized Jacobi method);
L(1; 1) = LGGS , the iteration matrix of the GGS method (generalized Gauss-Seidel

method);
L(0; b) = LGJOR, the iteration matrix of the GJOR method (generalized extrapo-

lated Jacobi method);
L(b; b) = LGSOR, the iteration matrix of the GSOR method (generalized SOR

method);
L(a; b) = LGAOR, the iteration matrix of the GAOR method (generalized AOR

method).
L(a1, a2; b) = LGTOR, the iteration matrix of the GTOR method (generalized TOR

method).
From the above statement, one can easily understand that the GMPOR method in-

cludes the GJ method, GGS method, GJOR method, GSOR method, GAOR method,
GTOR method and MPOR method as its specific cases. This paper is organized as
follows. In Section 2, we present a comparison theorem and the (generalized) Stein-
Rosenberg theorem for the GMPOR method, which improves some recent results[9,11].
Section 3 contains the convergence theorem of the GMPOR method for solving the
nonsingular linear system, which extends the corresponding result of [9]. In the final
Section, two theorems are given. The first theorem provides a necessary and sufficient
condition such that the GMPOR method for solving the singular linear system is con-
vergent. The second theorem reveals the real interval for which the GJOR method
and the GSOR method are simultaneously convergent, one of the main results in [1] is
generalized. All definitions and notations here are standard and can be found in [8] or
[13].

2. Comparison Theorem and Stein-Rosenberg Theorem

Let n be a natural number. By < n > we denote the set {1, · · · , n}
Throughout this section we always assume that the following conditions hold:

Li = D−1Ei ≥ 0, i = 1, · · · , k, U = D−1F ≥ 0, and B =
k∑

i=1

Li + U = LGJ (2.1)

ρ
( k∑

i=1

Li

)
< 1 (2.2)


