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Abstract

An iterative nonoverlapping domain decomposition procedure is proposed and
analyzed for linear elliptic problems. At the interface of two subdomains, one
subdomain problem requires that Dirichlet data be passed to it from the previous
iteration level, while the other subdomain problem requires that Neumann data
be passed to it. This procedure is suitable for parallel processing. A convergence
analysis is established. Standard and mixed finite element methods are employed
to give discrete versions of this domain decomposition algorithm. Numerical ex-
periments are conducted to show the effectiveness of the method.
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1. Introduction

Nonoverlapping domain decomposition methods have received a lot of attention
during the past few years, since they have advantages of dealing with transmission
problems and allow efficient parallelism. For a recent development of these methods, we
refer to the papers by Funaro, Quarteroni and Zanolli[7], Marini and Quarteroni[11,12],
Lions[10], Després[4], Douglas, Paes Leme, Roberts and Wang[5], and the author[13,14].

In this paper, we propose an iterative nonoverlapping domain decomposition proce-
dure for second order partial differential equations. At the interface of two subdomains,
one subdomain problem requires that Dirichlet data be passed to it from the previous
iteration level, while the other subdomain problem requires that Neumann data be
passed to it. Thus, this procedure can be efficiently implemented on computers with
parallel architecture, as an improvement of the method in [7], [11], [12]. Both the
method and the convergence analysis in this paper are closely related to and based
on the techniques given in [7], [11], [12]. However, we will introduce a Galerkin ap-
proximation with Lagrange multipliers and a hybridized mixed finite element method,
which were not dealt with in [7], [11], [12]. We will also prove that the error reduction
factors per iteration in Galerkin approximations and hybridized mixed finite element
approximations are independent of the grid size.

In §2, the domain decomposition method is described for general elliptic problems.
In §3, a convergence analysis is carried out for general linear elliptic problems in multi-
dimensions. In §4, a finite element approximation is employed. In §5, a finite element
approximation with Lagrange multipliers is considered. Then, in §6, a hybridized mixed
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finite element method is applied. Finally in §7, numerical experiments are provided to
check the correctness of the theory.

2. Domain Decomposition Method

Let Ω be a smooth bounded domain or a convex polygon in R2 with boundary ∂Ω.
Consider the following boundary value problem: find u ∈ H1(Ω) such that

Lu = f in Ω, u = g on ∂Ω, (1)

where f ∈ L2(Ω) and g ∈ H
1

2 (∂Ω) are given, and the operator L is defined by

Lu = −
2

∑

i,j=1

∂

∂xi

(

aij(x)
∂u

∂xj

)

+ a0(x)u. (2)

The coefficients {aij} are assumed to be symmetric, uniformly positive definite, bounded,
and piecewise smooth in Ω, and a0 ≥ 0.

For simplicity, we partition the domain Ω into two nonoverlapping subdomains Ω1

and Ω2 such that Ω̄ = Ω̄1 ∪ Ω̄2, Ω1∩Ω2 = 0 We denote the interface by Γ = ∂Ω1 ∩∂Ω2.
The following argument makes it possible to include more than two computational
subdomains: If either Ω1 or Ω2 is not a connected set, then decompose them into
connected components:

Ω1 =
N1∪
j=1

Ω1j, Ω2 =
N2∪
j=1

Ω2j, (3)

where N1 and N2 are some positive integers. However, we must confine ourselves to
the case in which no interior vertices are allowed. That is, only strip-type domain
decompositions are considered here. Domain decompositions with cross points will be
treated later [6].

We now define the following domain decomposition method: Choose u0
k ∈ H1(Ωk)

with u0
k|∂Ωk∩∂Ω = g, k = 1, 2. For n = 0, 1, 2, · · ·, we construct the sequence un+1

k ∈
H1(Ωk) with un+1

k |∂Ω∩∂Ωk
= g satisfying

Lun+1
1 = f in Ω1,

∂un+1
1

∂ν1
A

= θ
∂un

1

∂ν1
A

+ (1 − θ)
∂un

2

∂ν1
A

on Γ, (4)

Lun+1
2 = f in Ω2, un+1

2 = δun
1 + (1 − δ)un

2 on Γ, (5)

where
∂un

k

∂νk
A

=
2

∑

i,j=1

aij
∂un

k

∂xj
νk

i , νk = {νk
1 , ν

k
2 } is the outward unit normal vector to ∂Ωk,

and θ, δ ∈ (0, 1) are relaxation parameters that will be determined to ensure and to
accelerate the convergence of the iterative procedure.

The differences between this method and the one in [7], [11], [12] lie in that the
former method gives parallelizable subdomain problems at each iteration level, while
the latter method leads to sequential subdomain problems, and that the former utilizes
the Neumann boundary values on an interface from two neighboring subdomains, while


