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Abstract

In this paper, a modification of the bisection simplex method[7] is made for
more general purpose use. Organized in an alternative simpler form, the modified
version exploits information of the optimal value, as does the original bisection
method, but no bracket on the optimal value is needed as part of input; in stead,
it only requires provision of an estimate b0 of the optimal value and an estimate
of the error bound of b0 (it is not sensitive to these values though) . Moreover, a
new, ratio-test-free pivoting rule is proposed, significantly reducing computational
cost at each iteration. Our numerical experiments show that the method is very
promising, at least for solving linear programming problems of such sizes as those
tested.

1. Introduction

The bisection method, proposed in an earlier paper by the author[7], exploits infor-

mation of the optimal value to speed up the solution process. However, the method

requires a bracket on the optimal value as part of its input, and its promisingly good

performance depends on whether a suitable bracket is available; it may even fail to solve

a problem if the initial interval provided does not contain the optimal value actually.

In this paper, the method is modified for more general purpose use. Organized in an

alternative simpler form, the new version no longer needs any bracket on the optimal

value as part of input; in stead, it only requires an estimate b0 of the optimal value and

an estimate of the error bound of b0, to which it is not sensitive though.

Nevertheless, it might be the new pivoting rule proposed that makes a more impor-

tant improvement. The original rule (Rule 3.9 of [7]) of the bisection method may be

regarded as a variant of Dantzig’s classical rule, applied in an alternative administra-

tion; features of rules of this type are as follows:

(1) The incoming variable takes a feasible value.

(2) The outgoing variable takes the value of zero.

(3) All the feasible variables remain feasible after a basis change.

Although these classical conditions are widely accepted, and employed in different

contexts, some authors such as Wolfe[13,14], Greenberg[4], Maros[5] and Belling-Seib[1]
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suggest relaxing condition (3); they reduce the amount of total infeasibility in stead.

Rules of this type usually do require less iterations than classical methods. Unfortu-

nately, they give a rise in computational cost per iteration. The new proposed rule,

which is a ratio-test-free one, not only relaxes condition (3) but also gets rid of mea-

suring infeasibility, consequently reducing computational effort at each iteration. Such

type of rules have been very successful in other contexts[8,9,10,11]. Since numerical re-

sults of our tests show that the number of iterations required by the modified version is

slightly less than that required by the original bisection method, total computational

cost is reduced.

In Section 2, we propose the pivoting rule first, and then establish a procedure using

the rule. In Section 3, we describe the modified algorithm in which the procedure is

employed as its subalgorithm. Finally, in Section 4, we report our numerical results

obtained, which are very encouraging although still preliminary.

2. The Ratio-Test-Free Rule

Consider linear programming problem in the standard form:

max z = cx (2.1a)

s.t. Ax = b (2.1b)

x ≥ 0, (2.1c)

where A ∈ Rm×n, b ∈ Rm, and c and x are row and column n-vectors, respectively.

In this section, an attempt is made for achieving feasibility under some fixed objec-

tive function value. For this purpose, the procedure, given in Section 3 of [7], is modified

in an alternative simpler form in which a ratio-test-free pivoting rule is employed.

View cx = z as a constraint, and take it as the 0-th constraint among others. Then,

setting

A :=

(

c

A

)

, b :=

(

z

b

)

, (2.2)

allows to denote the augmented constraint system by (2.1b) again. Thus now we have

A ∈ R(m+1)×n and b ∈ Rm+1 with a0j ≡ cj , j = 1, . . . , n and b0 ≡ z, which may

be referred to as objective value parameter. Assume that Ax = b is consistent with

rank(A) = k + 1 ≤ m + 1 < n.

Let B ∈ R(m+1)×(k+1) be the basis of A with the basic index set

JB = {j0, . . . , jk}. (2.3)

Introduce notation

J̄B = {1, . . . , n}\JB . (2.4)

The corresponding canonical form can then be represented by the tableau below:

B+A | B+b, (2.5)

where B+ is the Moore-Penrose inverse of B.


