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Abstract

We study the sufficient and necessary conditions of the convergence for parameter-
based rational methods in a Banach space. We derive a closed form of error bounds
in terms of a real parameter λ (1 ≤ λ < 2). We also discuss some behaviors when
the family is applied to abstract quadratic functions on a Banach space for λ = 2.

1. Introduction

We consider the problem of solving

F (x) = 0, (1)

where F : D ⊂ X → Y is a nonlinear differential operator defined on some convex
subset D of a Banach space X with values in a Banach space Y . Many problems of
applied mathematics can be brought in the form of equation (1). (see Ortega and
Rheinboldt [1970], Lancaster [1977], Dennis and Schnabel [1983], Cuyt and Rall [1985],
Laub [1991], etc.) A well-known method for solving (1) is the third-order Halley. Given
an approximation xk, compute xk+1 by

xk+1 = xk − [F ′(xk)− 1
2
F ′′(xk)F ′(xk)−1F (xk)]−1F (xk), (2)

Recent years, Kantorovich-type convergence (sufficient conditions for the convergence)
of the Halley method in Banach space setting has been mentioned by many authors:
Candela and Marquina [1990], and Kanno [1992]. In this paper, we introduce a real
parameter λ and design a new parameter-based rational iterations in Banach spaces as
follows:

yk = xk − F ′(xk)−1F (xk)
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H(xk, yk) = F ′(xk)−1F ′′(xk)(yk − xk)

xk+1 = yk − 1
2
H(xk, yk)[I +

λ

2
H(xk, yk)]−1(yk − xk), (3)

which include the Halley method as a specific choice of the parameter. We will not only
provide a complete Kantorovich-type convergence analysis as well as a local convergence
for this one-parameter family for 1 ≤ λ < 2 but also we point out that the maximum
order of convergence for the iteration at λ = 2 is greater than the famous conjecture by
Traub [15]. The conjecture states that their maximum order of convergence is three,
but we will show that it is of order four.

2. Sufficient Conditions for the Convergence

We first need a lemma.
Lemma 2.1. Let F (x) be a nonlinear operator from an open convex domain D in

a Banach space X to another Banach space Y. Suppose that F has 2nd order contin-
uous Frechet derivatives on D. Then the F (xk+1) together with the sequence {xk}∞k=0

generated by (3) has the following approximation for all k ≥ 0 and 1 ≤ λ ≤ 2,

F (xk+1) =
∫ 1

0
F ′′[yk + t(xk+1 − yk)](1− t)dt(xk+1 − yk)2 − 1

2

∫ 1

0
[F ′′[xk + t(yk − xk)]

[1− λ(1− t)]dt(yk − xk)H(xk, yk)[I +
λ

2
H(xk, yk)]−1(yk − xk)

+
∫ 1

0
{F ′′[xk + t(yk − xk)](1− t)− 1

2
F ′′(xk)}dt(yk − xk)

× [I +
λ

2
H(xk, yk)]−1(yk − xk). (4)

Now we can state our main result.
Theorem 2.1. Let F (x) : D ⊂ X → Y , X and Y are real or complex Banach

spaces, and D is an open convex domain. Assume that F has 2nd order continuous
Frechet derivatives on D and satisfies the following standard Newton-Kantorovich con-
ditions:

‖ F ′′(x) ‖≤ M, ‖ F ′′(x)− F ′′(y) ‖≤ N ‖ x− y ‖, for all x, y ∈ D. (5)

For a given initial value x0 ∈ D, assume that F ′(x0)−1 exists and satisfies

‖ F ′(x0)−1 ‖≤ β, ‖ F ′(x0)−1F (x0) ‖≤ η, (6)

M [1 +
2N

3(2− λ)M2β
]
1/3

≤ K, 1 ≤ λ < 2, (7)

h = Kβη ≤ 0.5, (8)

S(x0, t∗) ⊂ D, (9)


