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Abstract

In this paper, we develop a one-parameter family of P-stable sixth-order and
eighth-order two-step methods with minimal phase-lag errors for numerical inte-
gration of second order periodic initial value problems:

y′′ = f(t, y), y(t0) = y0, y′(t0) = y′0.

We determine the parameters so that the phase-lag (frequency distortion) of these
methods are minimal. The resulting methods are P-stable methods with minimal
phase-lag errors. The superiority of our present P-stable methods over the P-
stable methods in [1–4] is given by comparative studying of the phase-lag errors
and illustrated with numerical examples.

1. Introduction

The development of numerical integration formulae for the direct integration of the
periodic initial-value problem

y′′ = f(t, y), y(t0) = y0, y′(t0) = y′0 , (1.1)

which arises in the theory of orbital mechanics and in the study of wave equations, has
created considerable interest in the recent years.

Usually, the Numerov’s method

yn+1 = 2yn − yn−1 +
h2

12
(fn+1 + 10fn + fn−1) (1.2)

is the most popular method. Although, Numerov’s method has phase-lag of order four
and possess only a finite interval of periodicity (0, 2.4492). Recently Chawla and Rao[2,3]

developed fourth-order and sixth-order P-stable methods with phase-lag of order six.
Ananthakrishnaiah[4] obtained a two-parameter family of second order P-stable

methods M2(α, β) with phase-lag of order six. It is therefore natural to ask whether we
can obtain P-stable methods with phase-lag order and accuracy order higher than the
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methods in [1–4]. The purpose of this paper is by modificating the methods in [1–4]
and selecting parameters suitably, to obtain a new family of methods with sixth-order
and eighth-order. Comparing with the methods in [1–4], our methods are more useful
when a large step-size is used, that is , when a modest accuracy is sufficient or the
solution which consists of a slowly varying oscillation with a high-frequency oscillation
superimposed, has a small amplitude. At the end of this paper we give two examples
to demonstrate that our methods are better than the methods in [1–4].

2. Basic Theory

When we apply an symmetry implicit two-step method to the test equation

y′′ = −λ2y, λ > 0 , (2.1)

we obtain the polynomial

Ω(ξ, H2) = A(H)ξ2 − 2B(H)ξ + A(H), H = λh . (2.2)

It is stability and Ω(ξ,H2) = 0 is characteristic equation, A(H) and B(H) are polyno-
mials of H = λh.

Definition 1. (Lambert and Watson[5]) The method with stability polynomial
(2.2) is said to have interval of periodicity (0,H2

p ) if for all H2 ∈ (0,H2
p ), the roots ξ1,2

of Ω(ξ,H2) satisfy
ξ1,2 = e±iθ(H) (2.3)

for some real valued function θ(H).
Definition 2. The method with stability polynomial (2.2) is said to be P-stable

if its interval of periodicity is (0,∞).
It is easy to see that the roots of (2.2) are complex and of module one if

∣∣∣B(H)
A(H)

∣∣∣ < 1 . (2.4)

Thus, the P-stability condition is satisfied if

A(H) + B(H) > 0 and A(H)−B(H) > 0, for all H2 ∈ (0,∞) . (2.5)

The exact solution of the test equation (2.1) with the initial condition y(t0) = y0

and y′(t0) = y′0 is given by

y(t) = y0 cos λt +
y′0
λ

sinλt . (2.6)

Evaluating (2.6) at tn+1, tn and tn−1 and eliminating y0 and y′0, we obtain

y(tn+1)− 2 cos λhy(tn) + y(tn−1) = 0 , (2.7)


