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Abstract

This paper aims to present a fairly accessible generalization of several symmetric Gauss-

Seidel decomposition based multi-block proximal alternating direction methods of multipli-

ers (ADMMs) for convex composite optimization problems. The proposed method unifies

and refines many constructive techniques that were separately developed for the com-

putational efficiency of multi-block ADMM-type algorithms. Specifically, the majorized

augmented Lagrangian functions, the indefinite proximal terms, the inexact symmetric

Gauss-Seidel decomposition theorem, the tolerance criteria of approximately solving the

subproblems, and the large dual step-lengths, are all incorporated in one algorithmic frame-

work, which we named as sGS-imiPADMM. From the popularity of convergent variants

of multi-block ADMMs in recent years, especially for high-dimensional multi-block convex

composite conic programming problems, the unification presented in this paper, as well

as the corresponding convergence results, may have the great potential of facilitating the

implementation of many multi-block ADMMs in various problem settings.

Mathematics subject classification: 90C25, 90C22, 90C06, 65K05.

Key words: Convex optimization, Multi-block, Alternating direction method of multipliers,

Symmetric Gauss-Seidel decomposition, Majorization.

1. Introduction

In this paper, we consider the following multi-block convex composite programming:

min
x∈X , y∈Y

{
p1(x1) + f(x1, . . . , xm) + q1(y1) + g(y1, . . . , yn) | A∗x+ B∗y = c

}
, (1.1)
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where X , Y and Z are three finite dimensional real Hilbert spaces, each endowed with an inner

product 〈·, ·〉 and its induced norm ‖ · ‖, and
- X can be decomposed as the Cartesian product of X1, . . . ,Xm, which are finite dimensional

real Hilbert spaces endowed with the inner product 〈·, ·〉 inherited from X and its induced

norm ‖ · ‖. Similarly, Y = Y1 × · · · × Yn. Based on such decompositions, one can write

x ∈ X as x = (x1, . . . , xm) with xi ∈ Xi, i = 1, . . . ,m, and, similarly, y = (y1, . . . , yn);

- p1 : X1 → (−∞,∞] and q1 : Y1 → (−∞,∞] are two closed proper convex functions;

- f : X → (−∞,∞) and g : Y → (−∞,∞) are continuously differentiable convex functions

with Lipschitz continuous gradients;

- A∗ and B∗ are the adjoints of the two given linear mappings A : Z → X and B : Z → Y,
respectively; c ∈ Z is a given vector;

- without loss of generality, we define the two functions p : X → (−∞,∞] and q : Y →
(−∞,∞] by p(x) := p1(x1), ∀x ∈ X and q(y) := q1(y1), ∀y ∈ Y for convenience.

At the first glance, one may view problem (1.1) as a 2-block separable convex optimization

problem with coupled linear equality constraints. Consequently, the classic alternating direction

method of multipliers (ADMM) [12, 13] and its contemporary variants such as [8, 10] can be used

for solving problem (1.1). For the classic 2-block ADMM, one may refer to [9, 14] for a history

of the algorithm and to the recent note [3] for a thorough study on its convergence properties.

In high-dimensional settings, it is usually not computationally economical to directly apply

the 2-block ADMM and its variants to solve problem (1.1), as in this case solving the sub-

problems at each ADMM iteration can be too expensive. The difficulty is made more severe

especially when we know that ADMMs, being intrinsically first-order methods, are prone to

require a large number of outer iterations to compute even a moderately accurate approxi-

mate solution. As a result, further decomposition of the variables in problem (1.1) for getting

easier subproblems, if possible, should be incorporated when designing ADMM-type methods

for solving it. Unfortunately, even if the functions f and g in problem (1.1) are separable

with respect to each subspace, say, Xi and Yj , the naive extension of the classic ADMM to

multi-block cases is not necessarily convergent [2]. How to address the aforementioned issues

is the key reason why the algorithmic development, as well as the corresponding convergence

analysis, of multi-block variants of the ADMM has been an important research topic in convex

optimization.

Of course, it is not reasonable to expect finding a general algorithmic framework that can

achieve sterling numerical performance on a wide variety of different classes of linearly con-

strained multi-block convex optimization problems. Thus, in this paper our focus is on mod-

el (1.1), which is already quite versatile, for the following two reasons. Firstly, this model

is general enough to handle quite a large number of convex composite optimization models

from both the core convex optimization and realistic applications [4, 19]. Secondly, the con-

vergence of multi-block variants of the ADMM for solving problem (1.1) has been separately

realized in [4, 5, 18, 19, 25, 30], without sacrificing the numerical performance when compared to

the naively extended multi-block ADMM. The latter has long been served as a benchmark for

comparing new ADMM-type methods since its impressive numerical performance has been well

recognized in extensive numerical experiments, despite its lack of theoretical convergence guar-

antee. Currently, this line of ADMMs has been applied to many concrete instances of problem

(1.1), e.g., [1, 7, 11, 16, 21, 24, 26–29], to name just a few.


