Preparation of atomic entangled states and Schrödinger cat states for N trapped ions driven by frequencymodulated laser

Zhong-Jie Wang *and Xu Fang

Department of Physics Anhui Normal University, Wuhu 241000, China

Received 17 July 2013; Accepted (in revised version) 24 September 2013 Published Online 18 November 2013

Abstract. We propose a new scheme to prepare the Greenberger-Horne-Zeilinger states and atomic Schrödinger cat states for N trapped ions This scheme is based on the interaction of N trapped ions with a frequency-modulated traveling wave light field. Preparations of these states can be all complished by one-step operation.

PACS: 42.50 Key words: trapped ion, entanglement state, atomic Schrödinger cat, frequency modulation

1 Introduction

Quantum entanglement has been enjoyed considerable attention in the last few years not only because it is fundamental in quantum mechanics but also because it plays a crucial role in quantum computation[1,2] and quantum teleportation[3].Various quantum systems have been suggested for the generation of entanglement such as trapped ions[4], nuclear magnetic resonance (NMR)[5], quantum dots[6], cavity quantum electrodynamics(CQED)[7] and others. In trapped ions system, pairs of hyperfine ground states provide an ideal host for quantum bits owing to less decoherence.. In order to entangle N trapped ions, the interaction between the ions is required and external control of this interaction is necessary to generate specific entanglement states[8]. For example, Many proposals are based on the interaction of optical Raman fields with the trapped ions[9,10,11,12]. However, these techniques require two or more laser beams acting on the trapped ions.

In this paper, we propose a scheme to prepare entanglement states and atomic Schrödinger cat states for N trapped ions using a single of frequency-nodulated laser. In our scheme, preparation of these states can be complished by one-step operation and a beam of laser is only required.

http://www.global-sci.org/jams

©2014 Global-Science Press

^{*}Corresponding author. Email address: wuliwzj@mail.ahnu.edu.cn (Z. J. Wang)

2 Theoretical description

We consider N two-level ions with energy difference $\hbar \omega_{\alpha}$, which are trapped in a harmonic potential trap and interacts with a frequency-modulated traveling wave light field the Hamiltonian of the system can be written as $(\hbar = 1)[13]$

$$H = H_0 + H_I$$

$$H_0 = \nu \alpha^{\dagger} \alpha + \frac{\omega_{\alpha}}{2} S_z$$

$$H_I = \frac{\Omega}{2} \{ e^{-i\omega_0 t - i\lambda \sin(\omega_p t + \varphi)} e^{ik_L x} S_+ + h.c \}$$

$$= \frac{\Omega}{2} \{ e^{-i\omega_0 t - i\lambda \sin(\omega_p t + \varphi)} e^{i\eta(\alpha + \alpha^+)} S_+ + h.c \}$$
(1)

where α^+ and α are the corresponding creation and annihilation operators of center-ofmass vibrational quanta, $S_z = \sum_{j=1}^{N} S_{zj}$, $S_x = \sum_{j=1}^{N} S_{xj}$, $\sigma_{zj} = |e_j\rangle \langle e_j| - |g_j\rangle \langle g_j|$ and $\sigma_{xj} = |e_j\rangle \langle g_j| + |g_j\rangle \langle e_j|$ are Pauli operators for the *j*-th ion; Ω is the Rabi frequency; ω_0 is the carrier frequency, k_L wave vector; $\eta = k_L \sqrt{\hbar/2m\nu}$ is the Lamb-Dicke parameter, *m* mass of the ion, ν is the trapping frequency; $x = a^+ + a$ denotes a dimensionless position operator of the ion; φ is modulating phase, here we select $\varphi = \pi$; λ and ω_p is the modulating amplitude and the modulating frequency., respectively. Applying optical rotating wave approximation, we obtain

$$H_{0} = \nu \alpha^{\dagger} \alpha + \frac{\Delta}{2} S_{z}$$

$$H_{I} = \frac{\Omega}{2} \{ e^{+i\lambda \sin(\omega_{p}t)} e^{i\eta(\alpha + \alpha^{+})} S_{+} + h.c \}$$

$$= \frac{\Omega}{2} \{ \sum_{m} J_{m}(\lambda) e^{im\omega_{p}t} e^{i\eta(\alpha + \alpha^{+})} S_{+} + h.c \}$$
(2)

where $\Delta = \omega_{\alpha} - \alpha_0$ is the detuning between the carrier frequency of light field and ionic transition frequency, $J_m(\lambda)$ is Bessel's function. In the following we select the detuning quantity $\Delta = 0$. In the interaction picture, we thus obtain

$$H_I(t) = \frac{\Omega}{2} \{ \sum_m J_m(\lambda) e^{im\omega_p t} e^{i\eta(\alpha e^{-ivt} + \alpha^+ e^{ivt})} S_+ + h.c \}.$$
(3)

Making Lamb-Dicke approximation, selecting that the modulating frequency satisfies $\nu - \omega_p \ll \omega_p, \nu$, and neglecting the fast oscillating terms, we can obtain

$$H_I(t) = i\varepsilon_0 S_x + i\varepsilon S_x (\alpha e^{-i\delta t} - \alpha^+ e^{i\varepsilon t})$$
(4)

where $\delta = v - \omega_p$, $\varepsilon_0 = \Omega J_0(\lambda)/2$, $\varepsilon = \eta \Omega J_1(\lambda)/2$. According to the definition of the displacement operator, during the infinitesimal interval [t, t+dt], the corresponding evolution of