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OPTIMAL ORDER CONVERGENCE IMPLIES NUMERICAL

SMOOTHNESS

SO–HSIANG CHOU

Abstract. It is natural to expect the following loosely stated approximation principle to hold: a
numerical approximation solution should be in some sense as smooth as its target exact solution
in order to have optimal convergence. For piecewise polynomials, that means we have to at least
maintain numerical smoothness in the interiors as well as across the interfaces of cells or elements.
In this paper we give clear definitions of numerical smoothness that address the across-interface
smoothness in terms of scaled jumps in derivatives [9] and the interior numerical smoothness in
terms of differences in derivative values. Furthermore, we prove rigorously that the principle can
be simply stated as numerical smoothness is necessary for optimal order convergence. It is valid
on quasi-uniform meshes by triangles and quadrilaterals in two dimensions and by tetrahedrons
and hexahedrons in three dimensions. With this validation we can justify, among other things,
incorporation of this principle in creating adaptive numerical approximation for the solution of
PDEs or ODEs, especially in designing proper smoothness indicators or detecting potential non-
convergence and instability.

Key words. Adaptive algorithm, discontinuous Galerkin, numerical smoothness, optimal order
convergence.

1. Introduction

Consider the problem of approximating a function u defined on a domain in R
n

by a sequence of numerical solutions {uh}. The target function u may be an exact
solution of a second or higher order partial or ordinary differential equation, and
the sequence may be piecewise polynomials from a discontinuous Galerkin method
[7] or reconstructed polynomials uR in an intermediate phase [8], and even post-
processed finite element solutions to achieve superconvergence [14]. Although we
had discontinuous Galerkin numerical solutions in mind, the source of the problem
is not important for our purpose here, as it only puts the degree of smoothness
of u in perspective. Now suppose that u is in W p+1

s (Ω) (standard notation for
Sobolev spaces here, supindex for the order of derivative and subindex for the Ls

based space). It is natural to expect that the approximation solutions should be as
smooth (in some sense) in order to achieve optimal convergence rate. The purpose
of this paper is to give clear and rigorous results on this simple minded principle.

Sun [9] showed in one dimension if the mesh is uniform and the function u
has p + 1 weak derivatives in Ls, s = 1, 2,∞, then a necessary condition can be
formulated. In particular in the s = ∞ case, the jumps of the kth derivatives, (across
a mesh point) of the approximation piecewise polynomial of degree p must be less
than or equal to O(hp+1−k), 0 ≤ k ≤ p. This one dimensional result is perhaps
not surprising, once one realizes the interpolation error behaves in a similar way:
taking a derivative, one loses a power of h, assuming u ∈ W p+1

∞ . In the appendix
of this paper, the assertion is actually proved by comparing the derivatives of u, its
continuous piecewise Lagrange interpolant uI , and uR at a mesh point. This short
proof can even be carried over to higher dimensions. Unfortunately, it cannot be
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extended to higher dimensions when s = 1, 2 due to the restriction on continuity
imposed by the Sobolev imbedding theorem (See Remark 4.1 in the appendix for
other reasons). Since now one starts with a function u ∈ W p+1

s , s = 1, 2, there
are always some k and up for which the kth derivative of u at a point of interest
is not well defined. On the other hand, in hindsight an idea (Lemma 2.1 below)
in the much lengthier and originally unfavored proof in [9] for one dimension can
be distilled and generalized to prove the two and three dimensional versions of the
same principle.

While Sun et al. [11, 12] have successfully applied it to the analysis of numerical
methods for one dimensional nonlinear conservation laws, it is quite clear that this
principle has a very broad scope of applications such as safeguarding divergence or
negating optimal order convergence in designing new methods, let alone in creating
smoothness indicators [11, 12] in an adaptive algorithm, and so on. Being motivated
by its application potential in higher dimensions, in this paper we generalize the
concept of numerical smoothness of a piecewise polynomial in [9] to higher dimen-
sions and show that in order for the convergence of uh to u to have optimal order p
in W p+1

s , uh must have W p+1
s , s = 1, 2,∞ numerical smoothness, provided that the

domain can be meshed by quasi-uniform subdivisions into triangles or quadrilater-
als in 2-D and tetrahedrons or hexahedrons (cubes) in 3-D. We accounted for both
interior and across interface numerical smoothness. In § 3, we formerly define the
across-interface numerical smoothness in Definition 3.1, which is well motivated by
the theorems in § 2 and also define interior numerical smoothness in Definition 3.2.
The main result that states optimal order convergence implies numerical smooth-
ness is proved in Theorems 3.3 and 3.4. This section is written in such a way that
the reader can go read it directly after the introduction section.

The organization of rest of this paper is as follows. In § 2, we first derive basic
error estimates without imposing conditions on meshes other than the shape regu-
larity. The main theorem is Theorem 2.11, now under the quasi-uniform condition
on the mesh. Finally, in § 4 we give a short proof of the one dimensional version of
Theorem 3.3 and explain why it cannot be extended to higher dimensions.

2. Basic Estimates for Numerical Smoothness

Let α = (α1, α2, · · · , αn), αi ≥ 0, 1 ≤ i ≤ n be a multi-index and |α| =
∑n

i αi.
Some of the theorems in this section have their one dimensional counterparts in [9].
We are especially inspired by the central use of Lemma 2.2 in [9]. The next lemma
is its higher dimensional version, which will be used after a scaling argument back
to the master element of unity size. At a certain point x ∈ R

n of interest, e.g., a
mesh nodal point, a center of a simplex (edge or face), to measure the smoothness
of a mesh function uh, we will be examining all the jumps J∂αuhKx, |α| = k in the
partial derivatives of order k for 0 ≤ k ≤ p. In this perspective, we now state and
prove the next lemma. Denote by Pp the space of polynomials of total degree at
most p.

Lemma 2.1. Let ∆ = (∆0,∆1, · · · ,∆p), where each ∆k is a vector of a certain
length (e.g., it has as many components as the number of partial derivatives of order

k). Let Ω̂± be two open sets in R
n. Define

Q(∆) = min
v̂∈P
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