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UNIFORM CONVERGENCE VIA PRECONDITIONING

RELJA VULANOVIĆ AND THÁI ANH NHAN

Abstract. The linear singularly perturbed convection-diffusion problem in one dimension is

considered and its discretization on the Shishkin mesh is analyzed. A new, conceptually simple
proof of pointwise convergence uniform in the perturbation parameter is provided. The proof is
based on the preconditioning of the discrete system.
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1. Introduction

We consider the following one-dimensional singularly perturbed problem of con-
vection-diffusion type,

(1) Lu := −εu′′ − b(x)u′ + c(x)u = f(x), x ∈ (0, 1), u(0) = u(1) = 0,

with a small positive perturbation parameter ε and C1[0, 1]-functions b, c, and f ,
where b and c satisfy

b(x) ≥ β > 0, c(x) ≥ 0 for x ∈ I := [0, 1].

It is well known, see [6, 9] for instance, that (1) has a unique solution u in C3(I),
which in general has an exponential boundary layer near x = 0.

Singular perturbation problems arise in various applications, see [3, 4]. Typical
of them are boundary and/or interior layers, regions whose size decreases as ε → 0
and where the solution changes abruptly. This is why these problems require special
numerical methods [5, 10, 4, 12, 7]. One of the most popular methods is to use
an appropriate finite-difference scheme on the layer-adapted meshes of Shishkin
[10, 4, 12, 7] or Bakhvalov [13, 12, 7] types.

We consider here the standard upwind discretization of (1) on the Shishkin mesh
withN mesh steps. It is shown in [11] that for the matrix of the resulting system the
condition number in the maximum norm is of magnitude O(ε−1(N/ lnN)2). Since
this is unsatisfactory when ε → 0, a simple preconditioning is proposed in the same
paper. This behavior of the condition number is contrasted in [11] to that of the
singularly perturbed reaction-diffusion problem, which can be described as (1) with
b ≡ 0 and c > 0 on I. When the reaction-diffusion problem is discretized using the
standard central scheme on the Shishkin mesh, there is no need for preconditioning
because the condition number behaves like O((N/ lnN)2).

We note that there is another difference between the two types of the singularly
perturbed problems, viz. the difference in the proofs of ε-uniform convergence of
the numerical solution to the discretized continuous solution. One of the ways to
prove that a finite-difference discretization yields ε-uniform convergence is to use the
following principle, which originated from non-perturbed problems (cf. [2, 13, 5]):
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Principle 1. ε-uniform stability and ε-uniform consistency imply ε-uniform con-

vergence.

Moreover, ε-uniform pointwise convergence is desired when solving singular pertur-
bation problems. For reaction-diffusion problems, this can be achieved by using the
following version ([13]) of the above principle:

Principle 2. ε-uniform stability and ε-uniform consistency, both in the maximum

norm, imply ε-uniform pointwise convergence.

However, Principle 2 does not work for convection-diffusion problems (1) because
ε-uniform pointwise consistency is not present, although it is easy to show that the
upwind scheme is ε-uniformly stable in the maximum norm. For these problems,
ε-uniform consistency can be proved in a discrete L1 norm and this is why the
proofs based on Principle 1 have to rely on some kind of hybrid stability inequality
[5, 1, 8, 7], an approach that typically involves the discrete Green’s function. Other
ε-uniform convergence proofs also exist, like those that use barrier functions [10, 4,
12, 7].

Our main result is that we show that essentially the same preconditioning (we
appropriately modify the method from [11]), which eliminates the difference in
the condition numbers of simple finite-difference discretizations for the convection-
diffusion and reaction-diffusion problems, can also be used to eliminate the differ-
ence in the proofs of ε-uniform pointwise convergence for these two problem types.
In other words, a suitable preconditioning technique enables the use of Principle 2
for the convection-diffusion problem. Using this approach, we prove an almost (up
to logarithmic factors) first-order pointwise ε-uniform convergence for the upwind
scheme discretizing the problem (1) on the Shishkin mesh. This result, however, is
not the main contribution of this paper, because the same has already been proved
elsewhere (see the above references). Rather, we feel that the main contribution
is this conceptually simple proof which points out that there is a connection be-
tween conditioning and ε-uniform pointwise convergence for convection-diffusion
problems.

The rest of the paper is organized as follows. We give the properties of the con-
tinuous solution in Section 2. Then, in Section 3, we introduce the finite-difference
scheme on the Shishkin mesh and discuss the conditioning of the discrete problem.
Section 4 provides the proof of ε-uniform pointwise convergence. Finally, some
concluding remarks are given in Section 5.

2. Properties of the continuous solution

The solution u of (1) can be decomposed into the smooth and boundary-layer
parts. We present here Linß’s [7, Theorem 3.48] version of such a decomposition:

(2) u(x) = s(x) + y(x),

(3) |s(k)(x)| ≤ C
(

1 + ε2−k
)

, |y(k)(x)| ≤ Cε−ke−βx/ε,

x ∈ I, k = 0, 1, 2, 3.

Above and throughout the paper, C denotes a generic positive constant which is
independent of ε. For the construction of the function s, see [7], since the details
are not of interest here. As for y, it solves the problem

(4) Ly(x) = 0, x ∈ (0, 1), y(0) = −s(0), y(1) = 0.

It is important to note that y satisfies a homogeneous differential equation. We
shall use this fact later on in the paper.


