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AN ADAPTIVE FINITE ELEMENT METHOD FOR SHAPE

OPTIMIZATION IN STATIONARY INCOMPRESSIBLE FLOW

WITH DAMPING

JIAN SU, ZHANGXIN CHEN, ZHIHENG WANG, AND GUANG XI

Abstract. This paper develops an adaptive finite element method for shape optimization in

stationary incompressible flow with damping. The continuous shape gradient of an objective
functional with respect to the boundary shape is derived by using the adjoint equation method and

a function space parametrization technique. A projection a-posteriori error estimator is proposed,
which can be computed easily and implemented in parallel. Based on this error estimator, an

adaptive finite element method is constructed to solve state and adjoint equations and a regularized

equation in each iteration step. Finally, the effectiveness of this adaptive method is demonstrated
by numerical experiments.
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1. Introduction

A shape optimization problem is to find a domain in a set of admissible domains
such that an objective functional achieves a minimum or maximum on it [22]. The
research of shape optimization is a branch of optimal control governed by partial
differential equations [15] and has a very wide range of applications in engineering
such as in the design of aircraft wings, high-speed train heads, impeller blades,
and bridges in medically bypassing surgeries. In the last few decades, the shape
optimization problems have attracted the interest of many applied mathematicians
and engineers [11-14, 16-18, 22, 23, 26, 27].

Numerical methods for shape optimization problems can be classified into gradient-
based and non-gradient-based optimization methods. The non-gradient-based meth-
ods include the one-shot method [11], approximate model methods [13, 18], and
evolutionary methods [16, 17]. The one-shot method does not involve an opti-
mization iteration and only needs to solve an optimality system which consists of
coupled state and adjoint equations and an optimality condition. The one-shot
method seems very attractive but it is not feasible to solve a coupled large-scale
nonlinear system in many flow optimization and control problems [11]. The approx-
imate model methods such as the response surface method and the Kriging method
depend on the choice of a sample space. If the early samples cannot reflect the
characteristics of the design space, these methods will fail to find an optimal shape.
The evolutionary methods may be able to find a global minimum or maximum when
the strained state equations are easy to solve. However, these methods are difficult
to use in reality when a cost function in them is difficult to calculate, because they
involve hundreds or even thousands of calculations to locate a near-optimal solution
even for fairly simple cases.
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Relatively, the gradient-based methods have the advantage of fast convergence
and high efficiency. For these methods, the most crucial step is how to compute the
gradient of an objective functional with respect to a shape variable. The approaches
to obtain the shape gradient include the finite difference [11], sensitivity [12, 22] and
adjoint equation approaches [14, 26, 27, 30]. The finite difference approach finds a
gradient by using a difference quotient approximation. Thus, if N design variables
are used to describe a domain shape, then one needs to solve the constrained state
equations N + 1 times at each iteration step of the optimization algorithm. This
approach can be extremely expensive in practical applications involving a large
number of design variables. The sensitivity approach utilizes a sensitivity equation
to obtain the shape gradient by the chain rule, and only requires to solve the state
equations one time and linear sensitivity systems N times at each optimization
cycle. In contrast, to compute all components of the gradient of the functional
using the adjoint equation approach requires the solutions of a single linear adjoint
equation and state equations one time. This approach produces a gradient of the
objective functional without a cost increase with an increasing number of shape
design parameters.

In every optimal cycle, how to increase the accuracy of numerical approximations
for a shape gradient is still a big challenge. The overall accuracy of the numerical
approximations often deteriorates due to local singularities such as those arising
from corners of domains and interior or boundary layers. An obvious strategy is
to refine the grids near these critical regions, i.e., to insert more grid points where
the singularities occur. A mathematical theory is developed for an adaptive finite
element method based on a class of a-posterior error estimators by Babuška and
Rheinboldt [1]. Yan and Liu et al derived a-posteriori error estimates for a finite
element approximation of distributed optimal control problems governed by the
Stokes equations [2] and parabolic equations[31]. Bangerth introduced a framework
for the adaptive finite element solution of a coefficient estimation problem in partial
differential equations [3]. In 2010, Zee et al. developed duality-based a-posteriori
error estimates and adaptivity for free boundary problems via shape-linearization
principles [4].

In this paper, we study an adaptive finite element method for shape optimization
in stationary incompressible flow with damping. First, we use a velocity method
to describe a variational domain in the optimization process. Second, the adjoint
equations are derived by employing the differentiability of an saddle point problem
which includes a Lagrange multiplier function. We obtain the continuous gradient
of an objective functional with respect to the domain shape with these adjoint
equations and a function space parametrization technique. Third, motivated by the
stabilized finite element method based on the two local Gauss integrals technique
in recent years [19-21, 24, 25], we construct an a-posterior error estimator by a
projection operator. Fourth, we present the adaptive finite element method for the
state and adjoint equations and a regularized gradient equation based on this error
estimator. Finally, the effectiveness of this adaptive method is demonstrated by
numerical experiments.

This paper is organized as follows: In Section 2, we state the shape optimization
problem in stationary incompressible flow with damping and derive the continuous
shape gradient. In Section 3 we propose an adaptive finite element method based
on a projection a-posteriori error estimator. We then present numerical examples
in Section 4, followed by conclusions in Section 5.


