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Abstract. The diffusive-viscous wave equation plays an important role in seismic exploration

and it can be used to explain the frequency-dependent reflections observed both in laboratory and

field data. The numerical solution to this type of wave equation is needed in practical applications
because it is difficult to obtain the analytical solution in complex media. Finite-difference method

(FDM) is the most common used in numerical modeling, yet the numerical dispersion relation and

stability condition remain to be solved for the diffusive-viscous wave equation in FDM. In this
paper, we perform an analysis for the numerical dispersion and Von Neumann stability criteria of

the diffusive-viscous wave equation for second order FD scheme. New results are compared with

the results of acoustic case. Analysis reveals that the numerical dispersion is inversely proportional
to the number of grid points per wavelength for both cases of diffusive-viscous waves and acoustic

waves, but the numerical dispersion of the diffusive-viscous waves is smaller than that of acoustic
waves with the same time and spatial steps due to its more restrictive stability condition, and it

requires a smaller time step for the diffusive-viscous wave equation than acoustic case.
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1. Introduction

The diffusive-viscous wave equation was proposed recently in the field of oil
and gas exploration. The low-frequency seismic anomalies related to hydrocarbon
reservoirs have lately attracted wide attention [25, 7, 17, 8]. Even though the re-
lationship between the frequency-dependent reflections and fluid saturation in a
reservoir can be quite complex, but there is a general connection between the char-
acter of porous medium saturation and seismic response. Goloshubin and Bakulin
observed phase shifts and energy redistribution between different frequencies when
comparing cases of water-saturated and gas-saturated rocks [14, 12]. Korneev et
al. observed that reflections from a fluid-saturated layer have increased amplitude
and delayed traveltime at low frequencies when compared with reflections from a
dry layer in both laboratory and field data [17]. Those observed results cannot be
explained using Biot theory [12, 3, 4, 5, 21, 10, 2], nor by the reflection properties of
an elastic layer [17], or the squirt flow and patchy saturation models [20]. Korneev
et.al. proposed a diffusive-viscous model to explain the frequency-dependent phe-
nomena in fluid-saturated porous reservoirs [17]. Therefore, the diffusive-viscous
theory is important in seismic exploration, for example, it can be used for detecting
and monitoring hydrocarbon reservoirs [15], and it is also essential to simulate the
propagation of the diffusive-viscous waves in practical applications.

Seismic numerical modeling is a valuable tool for seismic interpretation and an
essential part of seismic inversion algorithms. Another important application of
seismic modeling is the evaluation and design of seismic surveys [6]. There are
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many approaches to seismic modeling. The finite-difference method(FDM) is the
most straightforward numerical approach in seismic modeling, and it is also becom-
ing increasingly more important in the seismic industry and structural modeling
due to its relative accuracy and computational efficiency [22]. Some of the most
common FDMs used in seismic modeling are explicit, and thus conditionally stable.
Generally in seismology, explicit methods are preferred over implicit ones because
they need less computation at each time step and have the same order of accura-
cy. This has been noted for FDM [6, 11]. However, the size of the time step is
bounded by a stability criterion which is an important factor affecting the accura-
cy of the results. Additionally, a numerical dispersion (grid dispersion) related to
grid spacing has a detrimental effect on accuracy of FD scheme. It occurs because
the actual velocity of high-frequency waves in the grid is different from the true
velocity and it can occur even when the physical problem is not dispersive [9]. The
error introduced by numerical dispersion is dependent on the grid spacing and the
size of the time step. There are many studies in literature regarding the numerical
dispersion and stability analysis for acoustic wave propagation [1, 19]. However,
the numerical dispersion analysis and stability condition is rarely seen despite its
significance in seismic exploration for the diffusive-viscous wave propagation.

Our aims in this paper are to estimate the Von Neumann stability criteria and
derive the numerical dispersion relation for the finite-difference method for the
diffusive-viscous wave equation proposed by Korneev [17]. We will show that
there are some differences of stability condition and dispersion relation between
the diffusive-viscous wave equation and acoustic wave equation, and the dispersion
of diffusive-viscous waves is smaller than that of acoustic waves with the same time
and spatial steps because of its more restrictive stability condition, and it requires
a smaller time step for the diffusive-viscous wave equation than acoustic case.

2. The diffusive-viscous theory

In this section, we will first introduce the diffusive-viscous wave equation, then
give the propagating wavenumber and attenuation coefficient of the diffusive-viscous
waves prepared for the following section.

2.1. The diffusive-viscous wave equation. The diffusive-viscous theory is pro-
posed by Korneev [17, 13], which is used to explain the relationship between the
frequency dependence of reflections and the fluid saturation in a reservoir. The
diffusive-viscous wave equation in a 1-D medium is mathematically described as
follows:
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for (x, t) ∈ (−∞,∞)× [0,∞), where u is the wave field; γ ≥ 0, η ≥ 0 are diffusive
and viscous attenuation parameters, respectively, which are the functions of the
porosity and the permeability of reservoir rocks and the viscosity and the density
of the fluid; υ is the wave propagation velocity in a non-dispersive medium. The
second term in (1) characterizes a diffusional dispersive force, whereas the third
term describes the viscosity. t is the time and x is the space variables. Equation
(1) is extended to two dimensional case (2-D) as [15]
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The definitions of the variables are the same as (1), and (x, z) ∈ (−∞,∞)×(−∞,∞)
are the Cartesian coordinates.


