
INTERNATIONAL JOURNAL OF © 2014 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING, SERIES B Computing and Information
Volume 5, Number 1-2, Pages 1–12

A PARALLEL JACOBI-TYPE LATTICE BASIS REDUCTION

ALGORITHM

FILIP JEREMIC AND SANZHENG QIAO

Abstract. This paper describes a parallel Jacobi method for lattice basis reduction and a GPU
implementation using CUDA. Our experiments have shown that the parallel implementation is
more than fifty times as fast as the serial counterpart, which is twice as fast as the well-known
LLL lattice reduction algorithm.

Key words. Lattice basis reduction, Jacobi method, GPU.

1. Introduction

Lattice basis reduction has been successfully used for many problems in integer
programming, cryptography, number theory, and information theory [1]. In this
paper we discuss a parallel version of the lattice basis reduction algorithm called the
Jacobi method. The Jacobi method is very attractive as it is inherently parallel. We
take advantage of this by utilizing the graphics processing unit (GPU) to capitalize
on the algorithm’s parallel nature. After introducing notations in Section 2, we
will first describe a serial version of the Jacobi method for lattice reduction in
Section 3, and later explore its parallel nature in Section 4. Moreover, in Section 5
we will discuss the tools and tricks used in our GPU implementation to achieve high
runtime performance. Finally, in Section 6 we will present experimental results of
our parallel implementation of the Jacobi method.

2. Preliminaries

In this section we cover some basic notations which we will use throughout the
paper. Given a subspace W of Rn and a basis B = {b1, b2, . . . , bm} of n-dimensional
vectors which span W , we define a lattice L of W generated by the basis B as the
set of vectors:

L(B) =

{

m
∑

i=1

aibi

∣

∣

∣

∣

∣

ai ∈ Z

}

Typically, we view a lattice basis B in matrix form, where the vectors in the basis
form the columns of the matrix. In this context we say that the respective matrix
B is a generator of the lattice L. The value m in the above definition of a lattice
is called the lattice dimension, or rank. A given lattice basis may generate proper
subspace of the space it resides in. In such a case the generator matrix is rectangular
with m < n. If on the other hand m = n, we say that the lattice is of full rank,
and consequently the generator matrix will be an invertible square matrix.

Received by the editors January 1, 2014 and, in revised form, March 22, 2014.
2000 Mathematics Subject Classification. 65F30, 68W10.

1

2 F. JEREMIC AND S. QIAO

When the lattice dimension m ≥ 2, the lattice can have infinitely many distinct
basis matrices. This is not surprising as the underlying vector space can also have
infinitely many bases. For example,

B =

[

2.0 2.7
0 0.7

]

and B′ =

[

−0.7 1.3
−0.7 −0.7

]

form two bases for the same lattice. The question arises as to how can we transform
one basis matrix into another, and more importantly what makes one basis “better”
than another? To answer the former question we introduce the notion of a lattice
determinant, which is defined as the square root of the determinant of BTB, where
B is the respective generator matrix, that is,

det(L(B)) =
√

det(BTB).

The lattice determinant is an important numerical invariant as it is independent of
the chosen lattice basis. Therefore, two generator matrices B and B′ generate the
same lattice L if and only if B′ = BZ, where Z, called a unimodular matrix, is an
integer matrix with |detZ| = 1. Because the determinant of a unimodular matrix
is of unit length, the inverse of a unimodular matrix is also an integer matrix. In
the above example, the two generator matrices B and B′ are related by

B′ =

[

−0.7 1.3
−0.7 −0.7

]

=

[

2.0 2.7
0 0.7

] [

1 2
−1 −1

]

= BZ

The answer to the latter question we posed is relative to the application problem
at hand, however for many such problems a desirable property of a lattice basis is
that it consists of relatively short and more orthogonal vectors. In this context, we
say that such a basis is reduced. Thus given a lattice basis matrix B, a lattice basis
reduction algorithm produces a unimodular matrix Z, such that the basis BZ is
reduced. In the above example, B′ is reduced from B. It consists of shorter and
more orthogonal basis vectors than those of B.

There are various notions of a reduced basis. In 1850, Hermite introduced the
first notion of reduction for lattices of arbitrary dimensions, proposed an algorith-
m for computing such reduced bases, and proved its termination [2]. Hermite’s
algorithm is of theoretical significance, but its complexity is still unknown. Schnor-
r and Euchner [3] reconsidered this problem and developed a practical algorithm
for constructing the Hermite reduced basis. In 1873, Korkine and Zolotareff [4]
strengthened the definition of Hermite reduced basis. Their proposed notion of re-
duction is usually called the HKZ reduced basis [5], named after Hermite, Korkine
and Zolotareff. In 1983, using induction, Kannan [6] presented the first algorithm
for constructing the HKZ reduced bases. Helfrich [7], Kannan [8], and Banihashemi
and Khandani [9] further refined Kannan’s algorithm and improved the complexity
analysis. Note that the methods based on Kannan’s strategy are intended as theo-
retical tools, and the related papers usually focus on asymptotic complexity. Agrell
et. al. [10] presented a practical algorithm and used it as a preprocessor for the
integer least squares problems. In 1891, Minkowski [11] defined a new notion of re-
duction, which is stronger than the HKZ reduction. This definition is now known as
the Minkowski reduced basis. Lenstra, Lenstra, and Lovász [12] developed the first
polynomial-time lattice reduction algorithm, known as the LLL algorithm, named
after the three authors. Their notion of reduced basis is actually a relaxation of the
Hermite reduced basis [2]. The LLL algorithm has become the most important tool
in public-key cryptanalysis [13] and integer least squares problems [10, 14]. Further

