
INTERNATIONAL JOURNAL OF c© 2013 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING, SERIES B Computing and Information
Volume 4, Number 4, Pages 394–412

GPU COMPUTING FOR MESHFREE PARTICLE METHOD

M. PANCHATCHARAM⋆,⋌, S. SUNDAR⋆, V. VETRIVEL⋆, A. KLAR⋌, AND S. TIWARI⋌

Abstract. Graphics Processing Units (GPUs), originally developed for computer games, now
provide computational power for scientific applications. A study on the comparison of compu-
tational speed-up and efficiency of a GPU with a CPU for the Finite Pointset Method (FPM),

which is a numerical tool in Computational Fluid Dynamics (CFD) is presented. As FPM is
based on the point cloud, it is so expensive when the number of particles are in millions. We
have demonstrated the application of the FPM using a single-GPU (Nvidia Tesla M2050) and
Intel CPU (Dual Xeon). Importance of the GPU is realized by the FPM since GPU yields a
computational speed-up of 70× for the Poisson equation with various boundary conditions.

Key words. Finite Pointset Method(FPM), CUDA, GPU, Bi-CGSTAB.

1. Introduction

Nowadays, computational methods and related hardware are really inseparable.
The hardware architecture progress leads the numerical methods that can be used
with a reasonable computational cost. To increase the computational ability of
CPU, a large and expensive cache is integrated and a many-core design has been
employed [10]. The small scale problems of CFD can be solved on a PC of multi-
core CPU and shared-memory parallel programming. For large scale problem, a
PC with few cores cannot offer enough computational capability, and a cluster
with many CPUs (or cores) is needed. Nevertheless, the memory bottleneck which
appears in the form of bandwidth limitation and fetching latency, has restricted
the performance of the many-core systems. In the meantime, Graphics Processing
Units (GPUs), having recently turned into general-purpose programmable units,
can provide a different solution to the memory access problem.

Initially driven by the gamer market, GPUs recently became suitable for high
performance computing applications. A GPU is a multi-threaded, many core pro-
cessors which was originally developed for graphics processing. However, in recent
years, the so-called General Purpose GPU (GPGPU) has been used widely for
computation in different fields because it has a high computing ability and a rela-
tively low cost. The main advantage of GPUs is their ability to perform significantly
more floating point operations (FLOPS) per unit time than a CPU. One of the mar-
ket leaders, NVIDIA, developed a parallel computation architecture called CUDA
(Compute Unified Device Architecture) [7]. CUDA is an extension of C language
which allows us to program the NVIDIA GPUs in an easy way. Other than NVIDI-
A, there are several ways to realize the GPGPU computing: Computer Graphics
with OpenGL [6], OpenCL [12], Stream (ATI Corporation) [1]. But according to
Du et al. [5], at this moment CUDA is more efficient on the GPU than Open-
CL. Hence, in our study, the NVIDIA GPU with CUDA platform is chosen because
CUDA is used in a variety of different fields of scientific computation such as graph-
ics, biology, linear algebra, PDE solvers and computational physics. Especially in

Received by the editors October 31, 2012 and, in revised form, August 31, 2013.
2000 Mathematics Subject Classification. 65Y05, 65Y20, 35Q30, 76D05.
This research was supported by DAAD.

394



GPU COMPUTING FOR MESHFREE PARTICLE METHOD 395

the applications of computational mathematics and computational physics, it ob-
tained surprising speed-up. Harada et al. [8] obtained 28× speed-up on GPU for
Smoothed Particle Hydrodynamics (SPH) solver using 262,144 particles. Rossinelli
et al. [18] present a GPU-accelerated solver for simulations of bluff body flows
in 2D using a re-meshed vortex particle method and 30× speed-up was obtained.
Knibbe et al. [9] implemented a Krylov solver on GPU with a 30× speed-up. Luo
et al. [11] obtained 71× speed-up on GPU for 1D shock tube problem using CESE
(Conservation Element and Solution Element) method.

The Finite Pointset method (FPM) [20] is a mesh free method for solving fluid
dynamic equations. It is a Lagrangian particle method, in which computational do-
main is filled with a finite number of particles. Particles move with fluid velocities
and they carry the fluid quantities, like the density, the velocity, the pressure and
so on. Similarly, boundaries are also approximated by a finite number of boundary
particles and boundary conditions are prescribed for them. Since it is a Lagrangian
particle method, the distribution of particles can be arbitrary. The FPM has more
advantages on fluid flow problems with moving boundary in time, where the re-
meshing is not required. The disadvantage of the FPM is the constant particle
management at each time step of a flow problem, otherwise, it may lead to inac-
curacy or instability. Drum et al. [4], Tiwari and Kuhnert [21] have applied the
FPM for various fluid flow problems. Our main goal is to solve the incompressible
Navier-Stokes equations by the FPM in GPU, however, we restrict ourselves to
solve the Poisson equation, since the pressure Poisson equation is the essential part
of solving the incompressible Navier-Stokes equations. Therefore, in this paper, we
focus on the iterative solvers for the Poisson equation in two dimensions on GPU
using CUDA.

The particles generated in CPU and transferred to the GPU for neighbor search
computations. In this paper, we implemented the non-recursive merge-sort algo-
rithm to sort the neighbors.

Finally, the computation in CPU produces a system of equations, where the
matrix is sparse and has no blocks. This system is solved in GPU using the Bi-
CGSTAB solver from cusp library.

The rest of the paper is organized as follows: Section 2 is the overview of the
Finite Pointset method. In section 3, key facts of CUDA are provided. The specific
aspects of the GPU implementation of Krylov methods such as Bi-CGSTAB us-
ing cusp library and non-recursive merge-sort algorithm are considered in detail in
Section 4. Section 5 will represent the numerical results for some benchmark prob-
lems and analyze the computational performance. Finally conclusions are drawn
in Section 6.

2. The Finite Pointset Method

In this paper, we restrict ourselves for solving the Poisson equation in Ω̄(⊂ R2).
Let us consider the following boundary value problem

(1) ∆u = f in Ω

(2) a0u+ b0
∂u

∂~n
= g on ∂Ω,

where a0, b0, f and g are given functions and ~n is the unit normal on boundary
pointing inside the domain. Here, (a0, b0) = (1, 0) denotes the Dirichlet boundary


