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CONTINUOUS SEDIMENTATION IN CLARIFIER-THICKENER

UNITS: MODELING MACROSCOPIC CONSERVATION LAWS

FROM MICROSCOPIC INTERACTING PARTICLES

NADINE BRAXMEIER-EVEN AND CHRISTIAN KLINGENBERG

Abstract. We study a model of continuous sedimentation. Under idealizing assumptions, the

settling of the solid particles under the influence of gravity can be described by the initial value

problem for a one-dimensional scalar conservation law with a flux function that depends discon-
tinuously on the spatial position.

There exists several entropy conditions related to the same conservation law in the literature giving

rise to uniqueness. The same initial data may give rise to different entropy solutions, depending
on the criteria one selects. This motivated us to derive the PDE together with an entropy con-

dition as a hydrodynamic limit from a microscopic interacting particle system.We are inclined to
prefer the entropy solution selected by this method. It turns out that this is an entropy condition

suggested by Audusse and Pethame in a different context.
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1. Modeling a clarifyer-thickener model

Given a suspension of small solid particles dispersed in a fluid in a box. Under
gravity these particles settle to the bottom of the box. The suspension shall be
modeled by a mixture of two superimposed continuous media. Let vs be the ve-
locity of the solid phase, vf the velocity of the fluid phase, and ρ the local solid
concentration. The equations of continuity give:

ut + (uvs)x = 0

ut − ((1− u)vf )x = 0

Now we introduce a volume average velocity

q := uvs + (1− u)vf

This allows the above two conservation of mass equations to be combined to a single
scalar equation of the type:

qt + g(x, t, q)x = 0 x ∈ R, t > 0

. Here the flux function in general depends in a discontinuous fashion on the space
variable x. For more details see [3].

2. Scalar conservation laws with discontinuous flux

We are concerned with the following class of scalar conservation laws, describing
flow through porous media

(2.1)

{ ∂tρ(t, x) + ∂xF (x, ρ(t, x)) = 0

ρ|t=0 = ρ0(x)
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Figure 1

where F (·, ρ) is continuous except on a set of measure zero. This discontinuity may
appear for example, if there is a sudden change of the porosity.

Recall that even if the space dependency of the flux is continuous, weak solutions
of this partial differential equation may not be unique. The most known example
of this is probably the inviscid Burger equation which reads as

{ ∂tρ(t, x) + 1
2∂xρ

2(t, x) = 0

ρ0(x) =
{ −1 if x < 0

1 if x ≥ 0

This equation may allow two solutions. The first solution produces a rarefaction at
the origin, the second solution produces a shock at the origin:

Therefore the solutions have to be considered together with an admissibility
criteria called entropy condition which picks a unique solution. The hope is, that
the entropy condition naturally leads to the physical relevant one.

If the flux function F (·, ρ) is a smooth function in space, the equation is well
understood. In this case Kruzkov in [10] proposed an entropy inequality for which
uniqueness and existence have been shown. The entropy inequality, in the weak
sense, reads as

∂t |ρ− c|+ ∂x {sign(ρ− c) (F (x, ρ)− F (x, c))}+ sign(ρ− c)∂xF (x, c) ≤ 0,

for each constant c. Obviously, if there are discontinuities in the space dependency
of the flux function F , the third term of the last expression does not make sense
and hence the Kruzkov inequality does not hold anymore. For this case several
admissibility criteria have been proposed in the literature, for example see [6, 9, 7],
for which uniqueness and existence have been shown within the various classes. In
[1] the authors proved uniqueness of a Kruzkov-type entropy inequality, but not
existence. Unfortunately these entropy conditions are in general not equivalent,
that means, it may happen that one admissibility criteria selects a unique entropy
solution, which is different from the unique entropy solution selected by an other
admissibility criteria.


