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ENTROPY STABLE SCHEMES FOR COMPRESSIBLE EULER

EQUATIONS

DEEP RAY AND PRAVEEN CHANDRASHEKAR

Abstract. A novel numerical flux for the Euler equations which is consistent for kinetic energy

and entropy condition was proposed recently [1]. This flux makes use of entropy variable based

matrix dissipation which can be shown to satisfy an entropy inequality. For hypersonic flows a
blended scheme is proposed which gives carbuncle free solutions for blunt body flows while still

giving accurate resolution of boundary layers. Several numerical results on standard test cases
using high order accurate reconstruction schemes are presented to show the performance of the

new schemes.
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1. Introduction

The finite volume method for hyperbolic problems requires the specification of
a numerical flux function. For scalar problems there is a well developed mathe-
matical theory which provides a route to develop stable and accurate schemes. For
systems of conservation laws like Euler equations, the mathematical theory is not
complete. Usually the schemes are developed to satisfy certain additional proper-
ties like entropy condition and kinetic energy stability which can be important for
turbulent flows. Tadmor [17] proposed the idea of entropy conservative numerical
fluxes which can then be combined with some dissipation terms using entropy vari-
ables to obtain a scheme that respects the entropy condition, i.e., the scheme must
produce entropy in accordance with the second law of thermodynamics. Howev-
er some of these entropy conservative numerical fluxes have to be computed with
quadrature rules since the integrals involved in the definition of the flux cannot
be evaluated explicitly. For the Euler equations, Roe proposed explicit entropy
conservative numerical fluxes [13, 6] which are augmented by Roe-type dissipation
terms using entropy variables. These schemes do not suffer from entropy violating
solutions that are observed in the original Roe scheme. However for strong shocks,
even the first order schemes can produce oscillations indicating that the amount of
numerical dissipation is not sufficient. Roe [6] proposed modifying the eigenvalues
of the dissipation matrix which lead to non-oscillatory solutions. The modification
of the eigenvalues is such that the amount of entropy production is of the correct
order of magnitude for weak shocks. The availability of cheap entropy conservative
fluxes allows us to use the procedure of [9] to develop high order accurate entropy
conservative schemes. Matrix dissipation can be added following the ENO proce-
dure of [2] to develop arbitrarily high order accurate entropy stable schemes for the
Euler equations on structured grids.

Faithful representation of kinetic energy evolution is another desirable property
of a numerical scheme [8]. This is important for direct numerical simulation (DNS)
of turbulent flows where the kinetic energy balance plays an important role in the
evolution of turbulence [10, 14, 11]. The scheme is also stable in the sense that
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spurious kinetic energy is not produced by the numerical fluxes. The essential
feature for a numerical flux in a semi-discrete finite volume method to correctly
capture the kinetic energy balance is that the momentum flux should be of the
form fm
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any consistent approximations of the pressure and the mass flux. This scheme
thus leaves most terms in the numerical flux unspecified and various authors have
used simple averaging. Subbareddy and Candler [16] have proposed a fully discrete
finite volume scheme for the compressible Euler equations which preserves kinetic
energy but the resulting scheme is implicit. All of these kinetic energy preserving
schemes are however not entropy conservative, while on the other hand, the entropy
conservative schemes do not have the kinetic energy preservation property. It is
thought that for DNS of compressible flows, a numerical scheme which preserves
kinetic energy and satisfies entropy condition is desirable since such schemes would
be non-linearly stable. Schemes which satisfy entropy condition are found to lead to
stable density fluctuations in compressible isotropic turbulence simulations, while
schemes which do not have this property can be unstable with respect to density
fluctuations [4, 11].

In [1] explicit centered numerical fluxes for the compressible Euler equations
which are entropy conservative and also preserve kinetic energy in the case of the
semi-discrete finite volume scheme were developed. Due to lack of upwinding, the
schemes are not stable for discontinuous solutions and for Navier-Stokes equations
on coarse meshes for which shocks may not be well resolved. They yield stable
solutions for Navier-Stokes equations when used on very fine meshes where the
physical viscosity is enough to stabilize the scheme. However for Euler equations
and for Navier-Stokes equations on coarse meshes, the centered fluxes are unstable
and must be augmented with dissipation terms. Matrix dissipation similar to Roe
scheme but using entropy variables was used to developed entropy stable schemes
as in [17]. The eigenvalue modification of Roe [6] is used to compute strong shocks
without oscillations. All the schemes are shown to give entropy consistent solutions
in cases where the Roe scheme would give entropy violating shocks. The entropy
stable schemes with matrix dissipation preserve stationary contacts exactly but also
suffer from 1-D shock instability and the carbuncle phenomenon [1]. A modifica-
tion of the eigenvalues in the dissipation flux based on a blending of the Roe and
Rusanov schemes is used which avoids these problems but is still able to accurately
compute shear flows like boundary layers. The new schemes are tested here on
several standard problems to study their performance. Second order schemes are
tested using the MUSCL reconstruction approach and minmod limiter. The blend-
ed scheme is shown to give good performance on all the test cases while the basic
scheme performs well on problems with weak shocks.

The rest of the paper is organized as follows. Section (2) introduces the 1-D
Navier-Stokes equations and finite volume method. This is followed by a discus-
sion of the kinetic energy preservation property and the entropy condition. The
new entropy conservative and kinetic energy consistent fluxes are introduced in
section (2.5). Matrix dissipation flux is treated in section (3) and modifications to
ensure monotone solutions are discussed including a scheme which blends a more
accurate scheme with Roe-type eigenvalues, with the Rusanov form of the eigen-
values. Section (4) presents a range of test problems for 1-D shock case involving
shocks, expansions and rarefaction solutions. The schemes are compared with other
entropy stable schemes and the classical Roe scheme and their performance in the
second order version is also demonstrated including under grid refinement.


