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ON THE CACCIOPPOLI INEQUALITY OF THE UNSTEADY

STOKES SYSTEM

BUM JA JIN

Abstract. In this paper we study on a Caccioppoli inequality of the unsteady Stokes system.

Key words. Cacciappoli inequality, nonsteady Stokes system.

1. Introduction

Let Ω be an n-dimensional domain, n = 3. For x0 ∈ R
n, we set Br(x0) = {x ∈

R
n : ‖x−x0‖ < r} and Sr(x0) = {x ∈ R

n : ‖x−x0‖ = r}. For the Laplace equation
−∆u = 0 in Ω,

or for the steady Stokes system

−∆u+∇p = 0, div u = 0 in Ω,

the following inequality

(1.1) ‖∇u‖2L2(Br(x0))
≤ C

(ρ− r)2
‖u‖2L2(Bρ(x0))

holds for any 0 < r < ρ with C1r ≤ ρ < dist(x0, ∂Ω) for some C1 > 1, which
is called the Caccioppoli inequality. Caccioppoli inequality is very important tool
for the regularity estimate of elliptic partial differential equations (see [4, 3] and
references therein.)

Let φ be a cut-off function with φ = 1 in Br(x0) and φ = 0 exterior to Bρ(x0).
Caccioppoli inequality for the Laplace equation is easily obtained by testing uφ2 to
the both side of Laplace equation. On the other hand, testing uφ2 to the steady
Stokes system we have

‖∇u‖2L2(Br(x0))
≤ C

(ρ− r)2
‖u‖2L2(Bρ(x0))

+
C

ρ− r
‖p− p̄r‖L2(Bρ(x0))‖u‖L2(Bρ(x0)),

where p̄ρ = 1
|Bρ(x0)|

∫

Bρ(x0)
p(y)dy. There is ψ satisfying

divψ = p− p̄ρ in Bρ(x0), ψ = 0 on Sρ(x0),

‖∇ψ‖L2(Bρ(x0)) ≤ C‖p− p̄ρ‖L2(Bρ(x0))

(see [1, 2] and references therein). Testing ψ to the steady Stokes system we have

‖p− p̄ρ‖L2(Bρ(x0)) ≤ C‖∇u‖L2(Bρ(x0)).

Now, by the standard argument such as in Giaquinta[4] we have the Cacciopili
inequality for the steady Stokes system.
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Caccioppoli inequality for a parabolic partial differential equations should be as
follows:

sup
t0−r2<t<t0

‖u(t)‖L2(Br(x0)) + ‖∇u‖L2(Qr(x0)) ≤
C

ρ− r
‖u‖L2(Qρ(x0))

for any 0 < r < ρ with C1r ≤ ρ < min{dist(x0, ∂Ω),
√
t0} for some C1 > 1, where

Qr(x0) = Br(x0) × (t0 − r2, t0) for x0 ∈ Ω and t0 > 0. For the heat equation the
Caccioppoli inequality can be obtained by testing uφ2 as before.

In this paper we consider (u, p) satisfying the unsteady Stokes system

∂tu−∆u+∇p = 0, divu = 0 in Ω× (0,∞).(1.2)

Here ∂t =
∂
∂t
.

Unlike to the steady Stokes system or the heat equation Caccioppoli inequality
for the unsteady Stokes system has not been known well. The main difficulty lies on
the fact that for the unsteady Stokes system p cannot be treated separately with
∂tu. Once Cacciappoli inequality would be given, regularity estimate of Navier-
Stokes system could be proceeded. In [5], the following Cacciappoli type inequality

‖∇2u‖L2(Qr(x0)) ≤
C

(ρ− r)2
‖u‖L2(Qρ(x0))

has been shown for the unsteady Stokes system, by decomposing pressure p, and it
has been used for the regularity estimate of a weak solution of the Navier-Stokes
system.

Our goal is to derive a Caccioppoli inequality for the unsteady Stokes system.
For the purpose of it, we introduce a vector field v so that ∇×(φv) is comparable to
φ2u. Testing∇×(φv) to the unsteady Stokes system, the term p can be disregarded.

The following is our main result.

Theorem 1.1. Let x0 ∈ Ω and t0 > 0, where Ω ⊂ R
n, n ≥ 3. Take 0 < r < ρ with

C1r ≤ ρ < min{
√
t0, dist(x0, ∂Ω)} for some C1 > 0.

Let (u, p) be a weak solution of the unsteady Stokes system (1.2). Then

‖∇u‖L2(Qr(x0)) ≤
C

ρ− r
‖u‖L2(Qρ(x0)).(1.3)

We also derive the Caccioppoli inequality for the higher derivatives.

Theorem 1.2. Under the same assumptions as in Theorem 1.1 for r, ρ, x0, t0, and

(u, p), we also have

sup
t0−r2<t<t0

‖∇× u(t)‖L2(Br(x0)) + ‖∇2u‖L2(Qr(x0)) ≤
C

(ρ− r)2
‖u‖L2(Qρ(x0)).(1.4)

In section 4 we also derive Caccioppoli type inequality for further terms(see
Theorem 4.1). For the proof of Theorem 1.1, Theorem 1.2 and Theorem 4.1, we
remark that the interior regularity of the weak solution of the Stokes system is well
known

Throughout this paper, all the constant C depend only on n(and independent
of r.) We denote by ‖ · ‖Lq the norm ‖ · ‖Lq(Rn). We denote by Br and Qr the sets

Br = Br(x0) and Qr = Br × (−r2 + t0, t0].


