
INTERNATIONAL JOURNAL OF c© 2013 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 4, Number 1, Pages 80–93

ON GLOBAL ERROR OF SYMPLECTIC SCHEMES FOR

STOCHASTIC HAMILTONIAN SYSTEMS

CRISTINA A. ANTON, YAUSHU WONG, AND JIAN DENG

Abstract. We investigate a first order weak symplectic numerical scheme for stochastic Hamil-
tonian systems. Given the solution (Xt) and a class of functions f , we derive the expansion of
the global approximation error for the computed E(f(Xt)) in powers of the discretization step
size. The present study is an extension of the results obtained by Talay and Tubaro for the ex-

plicit Euler scheme. Based on the derived global error expansion, we construct an extrapolation
method of the weak second order. The performance of the extrapolation method is demonstrated
numerically for a model simulating oscillations of the particles in storage rings.
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1. Introduction

In recent years, considerable progress has been made in the study of uncertainty
quantification. It is known that for some practical problems in science and engi-
neering, the effect due to random noise may lead to a significant change in the
physical response. Hence, mathematical models based on a deterministic approach
may not be sufficient, and the use of stochastic models has been receiving consid-
erable attention. To take into account the random effect, the governing equations
are usually represented by stochastic differential equations. In contrast to many
efficient and robust numerical algorithms already developed for the deterministic
differential equations, the progress on numerical methods for solving stochastic d-
ifferential equations is less mature. The most common problems associated with
computational algorithms for stochastic differential equations are the poor accuracy
and poor convergence, especially when long time solutions are required. Hence, it is
a challenging task to develop accurate and robust numerical schemes for stochastic
differential equations.

The Euler method is a popular numerical method for solving differential equa-
tions, and the scheme has been extended to stochastic equations because of its sim-
ple implementation [3]. For stochastic Hamiltonian systems, symplectic schemes [5]
are important computational methods that preserve the symplectic structure, and
their accuracy does not deteriorate even for long time computations. In this paper,
we focus on the application of the Euler method and a first order weak symplectic
scheme for approximating the solution of stochastic Hamiltonian systems.
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Let consider the autonomous stochastic differential equations (SDEs) in the sense
of Stratonovich:

dP = −∂QH0(P,Q)dt −
m
∑

r=1

∂QHr(P,Q) ◦ dwr
t , P (0) = p

dQ = ∂PH0(P,Q)dt +

m
∑

r=1

∂PHr(P,Q) ◦ dwr
t , Q(0) = q,

(1)

where P , Q, p, q are n-dimensional column vectors with the components Pi, Qi, pi,
qi, i = 1, . . . , n, and wr

t , r = 1, . . . ,m are independent standard Wiener processes.
The SDE (1) is called a Stochastic Hamiltonian Systems (SHS) ([7]). Here and in
the rest of this paper, for any function f defined on Rn × Rn, we denote by ∂P f
the column vector with components (∂f/∂Pi), 1 ≤ i ≤ n, and similarly we let ∂Qf
denote the column vector with components (∂f/∂Qi), 1 ≤ i ≤ n.

We denote the solution of the stochastic Hamiltonian system (SHS) (1) by

X0,X0

t =

(

P 0;p,q
t

Q0;p,q
t

)

, where 0 ≤ t ≤ T and X0 = (pT , qT )T is a random variable

having moments of any order and independent of any increments Wt −Ws of the
Wiener process Wt = (w1

t , . . . , w
r
t )

T . It is known that if Hj , j = 0, . . . ,m are

sufficiently smooth, then X0,X0

t is a phase flow (diffeomorphism) almost sure ([4]).
The stochastic flow (p, q) −→ (P,Q) of the SHS (1) preserves the symplectic

structure [7, Theorem 2.1] as follows:

(2) dP ∧ dQ = dp ∧ dq,

i.e. the sum of the oriented areas of projections of a two-dimensional surface onto
the coordinate planes (pi, qi), i = 1, . . . , n, is invariant. Here, we consider the
differential 2-form

dp ∧ dq = dp1 ∧ dq1 + · · ·+ dpn ∧ dqn,

and differentiation in (1) and (2) have different meanings: in (1) p, q are fixed
parameters and differentiation is done with respect to time t, while in (2) differen-
tiation is carried out with respect to the initial data p, q. We say that a method
based on the one step approximation P̄ = P̄ (t + h; t, p, q), Q̄ = Q̄(t + h; t, p, q)
preserves the symplectic structure if

dP̄ ∧ dQ̄ = dp ∧ dq.

Let divide the interval [0, T ] inN subintervals with a uniform time step h = T/N .

If the approximation X̄0,X0

0 = X0, X̄
0,X0

k = (P̄
(0;p,q)
k , Q̄

(0;p,q)
k ), k = 1, . . .N , of the

solution X0,X0

tk
= (P

(0;p,q)
tk

, Q
(0;p,q)
tk

), satisfies

(3) |E[f(X̄0,X0

k )]− E[f(X0,X0

tk
)]| ≤ Khj ,

for f from a sufficiently large class of functions, where tk = kh ∈ [0, T ] and the

constant K > 0 does not depend on k and h, then we say that X̄0,X0

k approximate

the solution X0,X0

tk
of (1) in the weak sense [5] with weak order of accuracy j.

To simplify the notation we define

(4) G(r,r) =

n
∑

i=1

∂Hr

∂Qi

∂Hr

∂Pi

,


