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NUMERICAL SOLUTION OF DYNAMIC PROBLEMS

IN COUPLE-STRESSED CONTINUUM

ON MULTIPROCESSOR COMPUTER SYSTEMS

VLADIMIR SADOVSKII, OXANA SADOVSKAYA, AND MARIYA VARYGINA

Abstract. Computational algorithm for the solution of 2D and 3D dynamic problems of the
Cosserat elasticity theory using multiprocessor computer systems is worked out. The algorithm is
based on the two-cyclic splitting method with respect to the spatial variables in combination with
the explicit monotone finite-difference ENO–scheme for solving 1D problems adapted for the cal-

culation of discontinuities. Boundary conditions of symmetry, permitting to reduce computations
many times, are formulated. Computations of 3D Lamb’s problem on the action of concentrated
load on the surface of a homogeneous elastic half-space and the problem on the action of con-
centrated impulsive periodic load are performed. The shock waves of four types (longitudinal,
transverse, torsional and rotational waves), characteristic of a couple-stressed elastic medium, are
recognized numerically. The oscillations of rotational motion of particles on the wave fronts are
also found.

Key words. Cosserat continuum, dynamics, elasticity, shock-capturing method, finite-difference
scheme, and parallel computational algorithm.

Introduction

One hundred years celebrated last year from the date of appearance of the first
theory of a continuum with internal rotations (the Cosserat continuum), which
initiated the development of mechanics of continua with microstructure. The first
work by brothers Eugene and Francois Cosserat [1], dedicated to the construction
of the couple-stressed elasticity theory, was published in 1909. Further development
of this theory refers to the sixties of XX century [2, 3, 4, 5].

Mathematical model of the Cosserat elasticity theory, which takes into account
the microstructure of materials, is used to describe the stressed-strained state of
composites, powdered, granular, micropolar and liquid-crystal materials. Simplifi-
cation of this model is a reduced Cosserat model where additional rotational degrees
of freedom are taken into account, but the couple stresses are not considered, at
first it was suggested in [6]. Current researches on modeling of nanoscale structures
show that the Cosserat model results from a limit transition in discrete molecular-
dynamic models with an unbounded increase in a number of particles [7, 8, 9].
Therefore, in the near future this model will find wide application.

One of the main factors constraining the analysis of models of non-classical media
is a lack of information about the material constants. This, in turn, opposes the
adaptation of such models into practice of calculating dynamic characteristics of
granular materials. First publications about experimental determination of the
elasticity parameters in media with microstructure appeared in 1970 – 1980 years.
Parameters for some materials such as bone tissue, highly porous polymer materials
and composites were obtained in [10, 11, 12].
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A fundamental difference between the model of the couple-stressed elasticity
theory and the classical one is that the former implicitly includes the small para-
meter that characterizes the size of particles in the microstructure. As a result, in
order to obtain correct numerical solutions, computations must be performed on
a grid whose meshes are smaller than the characteristic size of particles. To solve
2D and 3D dynamic problems, parallel algorithms can be efficiently used because
they make it possible to distribute the computational load between multiple nodes
of a cluster. The use of distributed computing allows to do much more fine grids,
thereby increasing the accuracy of numerical solutions.

A part of the results of the present paper was reported at the Fifth Conference
on Finite Difference Methods: Theory and Applications (June 28 – July 2, 2010,
Lozenetz, Bulgaria).

1. Mathematical model

In the model of the Cosserat continuum, along with translational motion which is
defined by the velocity vector v, independent rotations of particles with the angular
velocity vector ω are considered and, along with the stress tensor σ with nonsym-
metric components, the nonsymmetric tensor m of couple stresses is introduced.
Complete system of equations of the model consists of the motion equations, the
kinematic equations, and the generalized law of the linear elasticity theory:

(1)

ρ v̇ = ∇ · σ + ρ g, j ω̇ = ∇ ·m− 2 σa + j q,

Λ̇ = ∇v + ω, Ṁ = ∇ω,

σ = λ (δ : Λs) δ + 2µΛs + 2αΛa,

m = β (δ : M s) δ + 2 γM s + 2 εMa.

Here ρ is the material density, g and q are the vectors of body forces and moments,
Λ and M are the strain and curvature tensors, j is the product of the moment
of inertia of a particle about to the axis passing through its center of gravity by
the number of particles in a unit volume, δ is the metric tensor, and λ, µ, α,
β, γ, ε are the phenomenological elasticity coefficients for an isotropic medium.
The conventional notations and operations of the tensor analysis are used: a colon
denotes double convolution of tensors, a dot over a symbol denotes a derivative with
respect to time, and superscripts s and a denote the symmetric and antisymmetric
tensor components. Where needed, the antisymmetric component is identified with
the corresponding vector. In particular, the vector of the tensor σa = (σ − σ∗)/2
appears in the equations of motion (an asterisk denotes a tensor transposition).

The formula r =
√

5 j/(2 ρ) is valid to estimate the linear parameter of micro-
structure of a material. It is based on the model approximation about a medium
as dense packing of an ensemble of ball-shaped particles of identical radius r.

For 3D case the system of equations (1) in a Cartesian coordinate system has
the next expanded form:

(2)

ρ v̇i = σ1i,1 + σ2i,2 + σ3i,3 + ρ gi,

a1 σ̇ii + a2 (σ̇kk + σ̇ll) = vi,i,

a3 σ̇ik + a4 σ̇ki = vk,i − ωl, a4 σ̇ik + a3 σ̇ki = vi,k + ωl,

j ω̇i = m1i,1 +m2i,2 +m3i,3 + σkl − σlk + j qi,

b1 ṁii + b2 (ṁkk + ṁll) = ωi,i,

b3 ṁik + b4 ṁki = ωk,i, b4 ṁik + b3 ṁki = ωi,k.


