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A NUMERICAL METHOD FOR SOLVING PARABOLIC

EQUATIONS BASED ON THE USE OF A MULTIGRID

TECHNIQUES
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Abstract. A numerical method for solving parabolic equations based on multigrid techniques is
proposed. The stability, approximation and conservation properties of the method are investigated
theoretically and numerically for several initial-boundary model problems for the heat conduction
equation. The use of the method makes it possible to considerably reduce the computational work
as compared to either implicit or explicit schemes. A parallel implementation of the method is
presented.
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1. Introduction

In the numerical modeling of many physical problems, for instance, in fluid dy-
namics, the diffusion processes should be taken into account. Therefore, the need
in solving parabolic equations arises. The use of explicit schemes for the approxi-
mation of parabolic type equations implies severe limitations on the time stepsize
due to stability conditions [1] which results in very time-consuming computations.
The implicit schemes can be used with larger time stepsizes, but the additional
computational costs due to the solution of arising linear algebraic systems may also
result in spending a lot of computational time.

For the solution of the linear algebraic systems arising in the implicit schemes,
the multigrid method can be used. The latter was first proposed by R.P.Fedorenko
for the solution of elliptic equiations in [2], and then justified theoretically by
N.S.Bakhvalov in [3]. The generalization of the multigrid method for the case
of parabolic equations was presented in [4], [5]. However, the use of the multigrid
methods in their standard form may also involve a big amount of computational
work, which may result in a marginal, if any, improvement as compared to the cal-
culations using explicit schemes. For instance, such situation arises in the numerical
investigation of Richtmyer-Meshkov instability [6] under experimental conditions.
This explains the need in development of new numerical methods for the solution
of parabolic type equations, especially for the cases when detailed spatial grids are
used.

In papers [7], [8], an efficient algorithm for the solution of initial-boundary prob-
lems for parabolic equations is proposed which is based on the use of a two-grid
method. The processing of each time layer involves only one iteration of the two-
grid cycle and only few (or even one) smoothing iterations for each grid level. A
theoretical and numerical investigation of several model initial-boundary problems
for the heat conduction equation showed that the proposed algorithm possesses
the same accuracy and stability as the fully implicit scheme on the finest grid.
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Moreover, in contrast with the computational scheme presented in [7], the scheme
developed in [8] possesses the conservation property. In [9], the new numerical
method for the solution of two-dimensional parabolic equations is proposed, based
on the use of L-grid method. The choice of the coarsest grid is defined by the
conditions h2

x,L = o(τ), h2
y,L = o(τ), where hx,L, hy,L are the spatial stepsizes for

the coarsest grid, and τ is the time stepsize. At each time layer, only one iteration
of the L-grid cycle is performed, and only few (or even one) smoothing iterations
are done for each grid level. For a two-dimensional model problem for the heat con-
duction equation, it is shown that the proposed method allows to obtain a smooth
solution (having bounded finite-difference derivatives up to the fourth order) with
the same order of accuracy as that of the fully implicit scheme. This method is
suitable for the solution of problems which require the time stepsize essentially
larger than O(h2), where h = max(hx,1, hy,1) is the maximum stepsize of the finest
spatial grid. A parallel implementation of the proposed method is developed.

In the present paper, the numerical method based on the use of L grids for the
solution of two-dimensional parabolic equations [9] is considered. This method is
generalized for the three-dimensional case. For a two-dimensional model problem
for the heat conduction equation, it is shown that under some conditions of sufficient
smoothness of the initial data and the stability condition, the new numerical method
allows to obtain the solution with the same order of accuracy as that of the fully
implicit scheme. It is demonstrated that the use of the proposed method allows to
reduce substantially the arithmetic work and the run-time as compared to the use
of the implicit or the explicit schemes on the finest grid. Numerical tests for model
problems with smooth coefficients has confirmed the good accuracy of the method.
Numerical results obtained for a model problem with discontinuous coefficient has
confirmed that this method finds the solution with the relative error of several per
cent related to the solution obtained with the use of the fully implicit scheme.

A part of the results of the present paper was reported at the Fifth Conference
on Finite Difference Methods: Theory and Applications, 2010, June 28-July 2,
Lozenetz, Bulgaria.

2. Algorithm of new numerical method for the solution of parabolic

equations

The design and analysis of the algorithm implementing the new numerical method
for the solution of parabolic equations is demonstrated for the case of initial-
boundary problem for the heat equation

(1)
ρCv

∂u

∂t
= div(κ gradu) + f, (−→x , t) ∈ G,

u(−→x , t) = g(−→x , t) if −→x ∈ γ, u(−→x , 0) = T0(
−→x ),

where Cv is the heat capacity coefficient at constant volume, ρ is the density, κ
is the heat conduction coefficient, u is the temperature at the point −→x = (x, y)
or −→x = (x, y, z) at the time t, G = {0 < x < l1, 0 < y < l2, 0 < t ≤ T } or
G = {0 < x < l1, 0 < y < l2, 0 < z < l3, 0 < t ≤ T }, γ is the boundary of the
computational domain, f is the heat source density, and g(−→x , t) and T0(

−→x ) are
given functions. Here κ is a positive piecewise continuous scalar function. In order
to construct the finite-difference approximation of the problem (1), we will use the
fully implicit scheme on the uniform grid with the stepsizes hx, hy, hz along the x,
y, z directions and the time stepsize τ . The discrete problem can be written as the
sequence of systems of linear algebraic equations Ahu

n+1 = fh with the unknown


