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A TRANSFER THEORY ANALYSIS OF APPROXIMATE

DECONVOLUTION MODELS OF TURBULENCE
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Abstract. This study considers Pao’s transfer theory of turbulence for the family of Approximate
Deconvolution Models (ADMs). By taking a different representation of the persistent input of
energy into the large scales of the turbulent flow, the Pao theory simplifies somewhat. Analysis
of the resulting model is given and it is verified that (after the simplification as was known before
it) it is consistent with the important statistics of homogeneous isotropic turbulence. The ADMs
have an enhanced energy dissipation and a modification to the kinetic energy which affect the
truncation of scales by reducing the models microscale from the Kolmogorov microscale. The
energy dissipation can be even more enhanced by the time relaxation and the effects of this term

are presented as well.
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1. Introduction

Turbulent flows consist of complex, interacting three dimensional eddies of var-
ious sizes. In 1941 Kolmogorov gave a remarkable, universal description of the
eddies in turbulent flow by combining a judicious mix of physical insight, conjec-
ture, mathematical and dimensional analysis. In his description, the largest eddies
are deterministic in nature. Those below a critical size are dominated by viscous
forces, and die very quickly due to these forces. This critical length, the Kolmogorov
microscale, is η = O(Re−3/4) in 3d, so the persistent eddies in a 3d flow requires
taking ∆x = ∆y = ∆z = O(Re−3/4) giving O(Re+9/4) mesh points in space per
time step. Therefore, direct numerical simulation of turbulent flows (down to the
Kolmogorov microscale) is often not computationally economical or even feasible.
On the other hand, the largest structures in the flow (containing most of the flow’s
energy) are responsible for much of the mixing and most of the flow’s momentum
transport. Thus, various turbulence models are used for simulations seeking to
predict a flow’s large structures.

One of the mysteries of turbulence is how energy is transferred between scales
and how nonlinearity achieves a balance between the input of energy at large scales
and its dissipation on exceedingly small scales. In the study of energy transfer
among scales, the energy at time t and in scales parameterized by wave-number k,
is denoted E(k, t). Energy transfer theories explore this through simplified partial
differential equations for E(k, t). Shell models explore the energy transfer among
scales by further discretizing the variable k through simplified systems of ordi-
nary differential equations for the energy in a wave-number shell, typically denoted
En(t) or un(t). Transfer theories and shell models have a common aim of un-
derstanding a critical feature of turbulent flow and have attracted the attention
of many researchers on turbulence so there are a large number of different such
models of increasing complexity. Perhaps surprisingly, of these only the simplest
Energy Transfer Model of Pao [25] gives unequivocally correct (to the extent that
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the phenomena is understood) predictions of the time averaged statistics and en-
ergy spectrum of homogeneous isotropic turbulence. Understanding the mystery of
energy transfer through nonlinearity becomes of critical importance in predictions
of turbulent flows because one fundamental role of turbulence models is to add O(1)
terms which exactly emulate the effects of this not well understood process on scales
much larger than the process itself occurs. For example, in 1960 J. Smagorinsky
wrote:

“In setting up a finite difference grid or a finite wave number space,
a turbulent threshold is in effect defined and the question is: How
do the equations know how to communicate with the molecular dis-
sipation range? One of course finds empirically that, without any
provision for dissipation, the cascade of energy to the higher wave
numbers ultimately increases the energy of the smallest wave re-
solvable by the grid. This energy has no place further to go, and
ultimately the calculation departs from nature sufficiently to give
intolerable truncation error.” ——— J. Smagorinsky, 1960

One promising approach to the simulation of turbulent flows is called Large Eddy
Simulation or LES. Approximate deconvolution models in LES have great promise
because they are systematic, have high accuracy and a firm theoretical foundation
in some critical respects. The goal of this report is to apply the Pao energy transfer
theory to these approximate deconvolution models (ADMs) to gain further insight
into their predictions of important turbulent statistics. We derive the energy trans-
fer model associated with ADMs. Interestingly, through a change of variable, the
wave-number closure that arises in ADMs becomes exactly the same as the one
occurring for the NSE. Thus the Pao closure can be used exactly for the ADM
without modification or extra tuning parameters. We thus study the predictions
of the Pao transfer theory for ADMs and compare them both theoretically and
computationally to those of the NSE. Interestingly, the computational study herein
involves wave-number discretization of E(k, t) on wave-number shells (following an
equi-partition of energy) and thus results in an apparently new Pao shell model for
turbulence.

1.1. The LES Models Considered. In LES the evolution of local, spatial av-
erages over length scales l ≥ δ are sought where δ is user selected. The selection of
this averaging radius δ is determined typically by computational resources (δ must
be related to the finest computationally feasible mesh), turnaround time needed
for the calculation, and estimates of the scales of the persistent eddies needed to
be resolved for an accurate simulation. On the face of it, LES seems feasible since
the large eddies are believed to be deterministic. The small eddies (accepting Kol-
mogorov’s description) have a universal structure so, in principle, their mean effects
on the large eddies should be model-able. The crudest estimate of cost is

(1) ∆x = ∆y = ∆z = O(δ),

with thus O(δ−3) storage required in space per time step. On the other hand,
it is entirely possible that the computational mesh must be smaller than O(δ) to
predict the O(δ) structures correctly. It is also entirely possible that, since LES
models are themselves inexact and uncertain, solutions to an LES model contain
persistent energetic structures smaller than O(δ). Thus, a good LES model will
(i) truncate scales so that microscale = O(δ), consistent with (1), (ii) predict the
correct time averaged statistics over scales l ≥ δ (so that computational resolution
is free to capture non-universal, non-isotropic, non-fully developed features) and


