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A HIGH PHYSICAL ACCURACY METHOD FOR

INCOMPRESSIBLE MAGNETOHYDRODYNAMICS
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Abstract. We present an energy, cross-helicity and magnetic helicity preserving method for

solving incompressible magnetohydrodynamic equations with strong enforcement of solenoidal
constraints. The method is a semi-implicit Galerkin finite element discretization, that enforces

pointwise solenoidal constraints by employing the Scott-Vogelius finite elements. We prove the

unconditional stability of the method and the optimal convergence rate. We also perform several
numerical tests verifying the effectiveness of our scheme and, in particular, its clear advantage

over using the Taylor-Hood finite elements.
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1. Introduction

The conservation equations for incompressible magnetohydrodynamic (MHD)
flows describe conducting, non-magnetic fluids, such as salt water, liquid metals,
plasmas and strong electrolytes [7]. We will study finite element discretizations of
the MHD equations in the following form, originally developed by Ladyzhenskaya,
and studied in, e.g., [10, 18, 11, 12, 17]:

ut +∇ · (uuT )−Re−1∆u+
s

2
∇(B ·B)− s∇ ·BBT +∇p = f,(1.1)

∇ · u = 0,(1.2)

Bt +Re−1
m ∇× (∇×B) +∇× (B × u) = ∇× g,(1.3)

∇ ·B = 0.(1.4)

Here, u is velocity, p is pressure, f is body force, ∇× g is a forcing on the magnetic
field B, Re is the Reynolds number, Rem is the magnetic Reynolds number, and s
is the coupling number.

We study a semi-implicit Galerkin finite element discretization of (1.1)-(1.4)
which enforces pointwise solenoidal velocity and magnetic fields, as well as global
conservation of energy and cross-helicity; by global conservation we mean the quan-
tities are unchanged for ideal MHD with periodic boundary conditions, and in the
viscous/resistance case and more general boundary conditions the quantities are
exactly balanced, analogous to the continuous case. We also prove the exact con-
servation of magnetic helicity for the ideal MHD system, thus showing that our
model preserves all three physical quantities that are conserved in the ideal MHD.
In addition to proving these conservation laws, we also prove the scheme is uncon-
ditionally stable, well-posed, and optimally convergent. Lastly, several numerical
experiments are given that demonstrate the effectiveness of the scheme.

Most schemes for fluid flow simulation conserve energy, but other fundamental
conservation laws are often ignored or not strongly enforced. However, when these
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other laws are correctly accounted for in the numerical scheme, resulting solutions
have greater physical accuracy, which leads to longer time stability and accuracy.
For example, Arakawa’s scheme for the 2D Navier-Stokes equations(NSE) that con-
serves energy and enstrophy[1], Arakawa and Lamb’s scheme for the shallow water
equations that conserves energy and potential enstrophy [2] and those of Navon
[19, 20], J.G. Liu and W. Wang’s finite difference schemes for 3D axi-symmetric
NSE flow that conserves energy and helicity [17] and MHD flows with symmetry
that conserve energy and cross-helicity, and most recently a scheme for full 3D NSE
that conserves energy and helicity [22, 6], all exhibit better long time behavior than
comparable schemes that conserve only energy. The discretization we formulate and
study herein for (1.1)-(1.4) is a finite element scheme that conserves all three fun-
damental quantities for general MHD flows - energy, cross-helicity and magnetic
helicity, and is therefore also expected to exhibit good accuracy.

In addition to integral invariants, there are other conservation laws fundamen-
tal to the system (1.1)-(1.4), which are explicitly part of the continuous system
as equations (1.2) and (1.4). Finite element discretizations typically enforce these
laws weakly, however in MHD this is typically not sufficient. The problems that
can arise from a poor enforcement of ∇ · u = 0 are well known even for the simpler
problems such as steady Navier-Stokes equations (NSE), see e.g. [15], and thus
in the MHD system such physically inconsistent effects can be magnified. The re-
quirement that ∇ · B = 0 comes from the fact that B is derived as the curl of a
electric field, and since div curl = 0 is a formal mathematical identity, for B not
to be divergence free is a mathematical inconsistency. This is well known in the
MHD community, and algorithms that preserve incompressibility of B provided
an incompressible initial condition is given exist [18], and for those that do not,
techniques such as ‘divergence cleansing’ can be applied to recover mathematically
plausible solutions [8]. The problem of satisfying the divergence-free condition for
the magnetic field is crucial in many of the MHD applications; for instance, differ-
ent numerical techniques have been used to prevent the incorrect shock capturing
because of the violation of ∇·B = 0 condition. One can find the description of such
techniques in [26] and references therein. Our scheme strongly enforces (pointwise!)
the solenoidal constraints by coupling the discrete analog of (1.4) to (1.3) through
the addition of a corresponding Lagrange multiplier λ to (1.3), then using the Scott-
Vogelius element pair to approximate both (u, p) and (B, λ) [23, 24]. Under mild
restrictions, this element pair has recently been shown to be LBB stable and admit
optimal approximation properties, and also implicitly enforces strong divergence
free constraints when only weak enforcement is implemented [27, 21]. It has since
been successfully used with the steady and time-dependent NSE [4, 16, 15, 5], and
thus the extension to using it for MHD is a next natural step.

There are two natural extensions of the scheme given in Section 3 for which our
analysis is relevant. The first is for a linearization of the scheme via the method of
Baker [3], by linearly extrapolating the first term of the each of the four trilinear
terms. All of the theory proven for the full nonlinear (Crank-Nicolson) scheme is
still valid, although the convergence proof would have additional technical details.
This scheme offers a significant increase in efficiency, since only one linear solve
is needed at each timestep; all of our numerical experiments will employ this lin-
earization. The second extension is for Taylor-Hood elements, provided the trilinear
terms are all skew-symmetrized. Here, the global conservation of energy and cross
helicity still hold as does optimal convergence, however with this element choice,


