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ANISOTROPIC hp–ADAPTIVE DISCONTINUOUS GALERKIN

FINITE ELEMENT METHODS FOR COMPRESSIBLE FLUID

FLOWS

STEFANO GIANI AND PAUL HOUSTON

Abstract. In this article we consider the construction of general isotropic and anisotropic adap-
tive mesh refinement strategies, as well as hp–mesh refinement techniques, for the numerical
approximation of the compressible Euler and Navier–Stokes equations. To discretize the latter
system of conservation laws, we exploit the (adjoint consistent) symmetric version of the interior
penalty discontinuous Galerkin finite element method. The a posteriori error indicators are derived
based on employing the dual-weighted-residual approach in order to control the error measured
in terms of general target functionals of the solution; these error estimates involve the product of
the finite element residuals with local weighting terms involving the solution of a certain adjoint
problem that must be numerically approximated. This general approach leads to the design of
economical finite element meshes specifically tailored to the computation of the target functional
of interest, as well as providing efficient error estimation. Numerical experiments demonstrating
the performance of the proposed adaptive algorithms will be presented.
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1. Introduction

The development of Discontinuous Galerkin (DG) methods for the numerical ap-
proximation of the compressible Euler and Navier-Stokes equations is an extremely
exciting research topic which is currently being developed by a number of groups
all over the world, cf. [1, 2, 3, 4, 6, 10, 11, 16, 20, 21, 22, 32, 33, 34], for example.
DG methods have several important advantages over well established finite volume
methods. The concept of higher-order discretization is inherent to the DG method.
The stencil is minimal in the sense that each element communicates only with its
direct neighbors. In particular, in contrast to the increasing stencil size needed to
increase the accuracy of classical finite volume methods, the stencil of DG methods
is the same for any order of accuracy, which has important advantages for the im-
plementation of boundary conditions and for the parallel efficiency of the method.
Moreover, due to the simple communication at element interfaces, elements with
so–called hanging nodes can be easily treated, a fact that simplifies local mesh
refinement (h–refinement). Additionally, the communication at element interfaces
is identical for any order of the method, which simplifies the use of methods with
different polynomial orders p in adjacent elements. This allows for the variation of
the order of polynomials over the computational domain (p–refinement), which in
combination with h–refinement leads to so–called hp–adaptivity.

Mesh adaptation in finite element discretizations should be based on rigorous
a posteriori error estimates; for hyperbolic/nearly–hyperbolic equations such esti-
mates should reflect the inherent mechanisms of error propagation (see [26, 27]).
These considerations are particularly important when local quantities such as point
values, local averages or flux integrals of the analytical solution are to be computed
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with high accuracy. In the context of aerodynamic flow simulations, it is of vital
importance that certain force coefficients, such as the drag, lift and moment on
a body immersed within a compressible fluid, are reliably and efficiently comput-
ed. Selective error estimates of this kind can be obtained by the optimal control
technique proposed in [8] and [5] which is based on duality arguments analogous
to those from the a priori error analysis of finite element methods. In the result-
ing a posteriori error estimates, the element-residuals of the computed solution are
multiplied by local weights involving the adjoint solution. These weights represent
the sensitivity of the relevant error quantity with respect to variations of the lo-
cal mesh size. Since the adjoint solution is usually unknown analytically, it has
to be approximated numerically. On the basis of the resulting a posteriori error
estimate the current mesh is locally adapted and then new approximations to the
primal and adjoint solution are computed. This feed-back process is repeated, for
instance, until the required error tolerance is reached. In this way, optimal mesh-
es, or in the hp–setting, optimal finite element spaces can be obtained for various
kinds of error measures, where optimal can mean most economical for achieving
a prescribed accuracy TOL or most accurate for a given maximum number Nmax

of degrees of freedom. This approach is quite universal as it can, in principle, be
applied to almost any problem, as long as it is posed in a variational setting.

In this work, we consider the a posteriori error estimation and adaptive mesh
design of the hp–version of the DG finite element method applied to compressible
flows on general finite element spaces consisting of an anisotropic computational
mesh with anisotropic polynomial degree approximation orders. Here, we shall
be interested in the reliable and efficient approximation of certain target func-
tionals of the underlying analytical solution of practical interest. In particular,
(weighted) Type I a posteriori error bounds are derived, based on employing the
dual-weighted-residual approach, cf. [5, 19, 28, 29], for example. Based on the
a posteriori error bound we design and implement a series of adaptive algorithms
to efficiently design the underlying finite element space. Inspired by our recent
articles [12, 13], we consider adaptive mesh refinement algorithms based on u-
tilizing anisotropic h–refinement, isotropic hp–refinement, and finally anisotropic
hp–refinement. Within this latter strategy, once elements have been marked for
refinement/derefinement, on the basis of the size of the local error indicators, the
proposed adaptive algorithm consists of two key steps: (a) Determine whether to
undertake h– or p–refinement/derefinement; (b) Select a locally optimal anisotrop-
ic/isotropic refinement. Step (a) is based on assessing the local analyticity of the
underlying primal and adjoint solutions, on the basis of the decay rates of Legendre
series coefficients; see our previous articles [16, 30, 29], together with [7]. Step (b)
is based on employing a competitive refinement strategy, whereby the “optimal”
refinement is selected from a series of trial refinements. This entails the numerical
solution of a series of local primal and adjoint problems which is relatively cheap
and fully parallelizable, cf. [13]. The work presented in this paper is a complete
and improved account of our recent work announced in the book chapter [14].

This article is structured as follows. In Section 2 we introduce the three–
dimensional compressible Navier–Stokes equations. Then, in Section 3 we formulate
its discontinuous Galerkin finite element approximation, based on employing the
adjoint consistent symmetric interior penalty method introduced in [23]. Then, in
Section 4 we derive an error representation formula together with the correspond-
ing (weighted) Type I a posteriori error bound for general target functionals of
the solution. The error representation formula stems from a duality argument and


