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NUMERICAL COMPUTATION OF THE FIRST EIGENVALUE
OF THE p-LAPLACE OPERATOR ON THE UNIT SPHERE

A. EL SOUFI, M. JAZAR, AND H. AZARI

Abstract. In this paper, we discuss a numerical approximation of the first

eigenvalue of the p-Laplace operator on the sphere (S™, g) of R+
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1. Introduction

The p-Laplace operator has been extensively studied in recent years, especially
in the context of a bounded domain in R™ [12, 7, 6, 11, 5, 13, 2, 1]. Recently, there
has been an increasing interest in the study of this operator - and in particular
of its first eigenvalue - in the more general setting of Riemannian manifolds. The
aim of this work is to provide numerical approximation of the first eigenvalue of the
p-Laplace operator on the sphere (S™, g) of R**1 g being the standard Riemannian
metric of the sphere, namely the first positive number A* such that the following
problem admits a non trivial solution in W1P(S")

* -2 mn
(1.1) Afu = XNuluP™= in S",

where p > 1. It is well known that A\* is the minimizer of the associated energy

(12 N emmind [ VAP, f WS, Il =1 [ 1P =)

That is, A* is the best constant such that the following Poincaré type inequality
holds for any f such that [g, |f[P~2f = 0:

[owsrzx [

By [10, Corollaire 3.1], we know that A* is also the first eigenvalue of the p-

Laplace operator on a semi-sphere with Dirichlet boundary condition
(1.3) Afu = NululP~2 in SV,
' u=0 on 98T =5"""1

where S is the upper semi-sphere.
We know the following

11772
(1) A [” 1} for p > 2. [10, Theorems3.2]
(2) A* = n in the case where p = 2.
(3) The first eigenfunction u of (1.3) can be chosen to be nonnegative.
(4) w is radial: u = @(p) where p is the geodesic distance from the north pole

ST
(5) u is a non increasing function of p € [0,7/2], ¢(7/2) = 0 and ¢’(0) = 0.
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Of course, one can set the normalization ¢(0) = 1.

From the expression of the spherical Laplacian in polar coordinates, the constant
A* appears as the unique positive number such that the following problem admits
a solution

@, € C%(0,7/2)

(1) {7 o= Dl + (- DBl =Xl peO./2)
Px 20, 0u(0) =1, L (0) =0, pu(m/2) = 0.

Behavior of the eigenfunction near 7 Let’s look to the behavior of the
solution of (1.4) near §. First, note that if p < 2 then ¢ (7/2) = 0 implies
that ¢ (7/2) = 0 also. Now, if p > 2 then putting ¢t := § — p and writing
0x(p) = pu(F — 1) = at™ + O(t*), with a > 1, we get

(aot® P72 [(p — Daa(a — 1)t* 2 + (n — 1)aat®] = —A*(at)P~".

Then necessarily, one has (« —1)(p—2)+a—2=p—1,ie a= 2pp:11 > 2. In both
cases, p > 2 or p < 2, we have

(1.5) pu(m/2) = @, (7/2) = P (m/2) = 0.
2. Some monotony properties

By “first positive eigenvalue” problem it is classically meant: given a manifold
M, find a couple (), @), A the least positive possible such that the problem

App = AplplP™  in M,
=0 on OM.

Aiming to point out some monotony properties, we invert the order: given A > 0,
find a couple (M, ) such that the associated problem admits a solution.

For our purpose, we limit ourselves to geodesic balls, i.e., M = By(N, p), where
N is the north pole on the unit sphere and p € (0,7). The problem can then be
formulated as follows: given A > 0, find (px, pa) so that @, is the unique solution,
up to the multiplication by a constant, of the problem (2.1) on B,(N, py). This
gives directly the following

(2.1)

Proposition 2.1. For all A > 0 there exists a unique py € (0,7) such that the
problem (2.1) admits a unique solution px on Bg(N,py) satisfying oAx(N) = 1.
Moreover, the mapping A — py s continuous decreasing and limy_o px = 7 and
limy 00 pa = 0.

3. Approximate problem
Fix A > 0, p) € (0,7) and ¢, solution of the following

"2\ S 02(07/))\)5
A p—2 _ ' _
(3.1) [—¢)\] (p— Dy +(n—1) s p

ex =20, @xa(0)=1, ©3(0)=0, wr(px)=0.
In order to study Problem (3.1) we transform it into an initial condition problem.
Since we have a problem at zero, using development into fractional Taylor series,
one find that ¢(p) = 1 — ap?T + O(p?**®), for p near zero, where
2—p
o= —
p—1

cos p _
o =-AE pe(0,p),

and a:= E[/\/n]ﬁ
p



