NUMERICAL COMPUTATION OF THE FIRST EIGENVALUE OF THE p-LAPLACE OPERATOR ON THE UNIT SPHERE

A. EL SOUFI, M. JAZAR, AND H. AZARI

Abstract. In this paper, we discuss a numerical approximation of the first eigenvalue of the *p*-Laplace operator on the sphere (S^n, g) of \mathbb{R}^{n+1} .

Key Words. First eigenvalue, p-Laplace operator, numerical approximation.

1. Introduction

The p-Laplace operator has been extensively studied in recent years, especially in the context of a bounded domain in \mathbb{R}^n [12, 7, 6, 11, 5, 13, 2, 1]. Recently, there has been an increasing interest in the study of this operator - and in particular of its first eigenvalue - in the more general setting of Riemannian manifolds. The aim of this work is to provide numerical approximation of the first eigenvalue of the p-Laplace operator on the sphere (S^n, g) of \mathbb{R}^{n+1} , g being the standard Riemannian metric of the sphere, namely the first positive number λ^* such that the following problem admits a non trivial solution in $W^{1,p}(S^n)$

(1.1)
$$\Delta_n^g u = \lambda^* u |u|^{p-2} \text{ in } S^n,$$

where p > 1. It is well known that λ^* is the minimizer of the associated energy

(1.2)
$$\lambda^* := \min\{ \int_{S^n} |\nabla f|^p, \ f \in W^{1,p}(S^n), \ \|f\|_{L^p} = 1, \ \int_{S^n} |f|^{p-2} f = 0 \}.$$

That is, λ^* is the best constant such that the following Poincaré type inequality holds for any f such that $\int_{S^n} |f|^{p-2} f = 0$:

$$\int_{S^n} |\nabla f|^p \ge \lambda^* \int_{S^n} |f|^p.$$

By [10, Corollaire 3.1], we know that λ^* is also the first eigenvalue of the *p*-Laplace operator on a semi-sphere with Dirichlet boundary condition

(1.3)
$$\begin{cases} \Delta_p^g u = \lambda^* u |u|^{p-2} & \text{in } S_+^n, \\ u = 0 & \text{on } \partial S_+^n = S^{n-1}, \end{cases}$$

where S^n_+ is the upper semi–sphere.

We know the following

- (1) $\lambda^* \geq \left[\frac{n-1}{p-1}\right]^{p/2}$ for $p \geq 2$. [10, Theorem3.2]
- (2) $\lambda^* = n$ in the case where p = 2.
- (3) The first eigenfunction u of (1.3) can be chosen to be nonnegative.
- (4) u is radial: $u = \varphi(\rho)$ where ρ is the geodesic distance from the north pole S_{-}^{n} .
- (5) u is a non increasing function of $\rho \in [0, \pi/2], \varphi(\pi/2) = 0$ and $\varphi'(0) = 0$.

Received by the editors March 30, 2010 and, in revised form, June 12, 2011. 2000 Mathematics Subject Classification. Primary 58C40; Secondary 58J50, 65M32.

Of course, one can set the normalization $\varphi(0) = 1$.

From the expression of the spherical Laplacian in polar coordinates, the constant λ^* appears as the unique positive number such that the following problem admits a solution

(1.4)
$$\begin{cases} \varphi_* \in C^2(0, \pi/2) \\ \left[-\varphi'_* \right]^{p-2} \left[(p-1)\varphi''_* + (n-1)\frac{\cos\rho}{\sin\rho}\varphi'_* \right] = -\lambda^* \varphi_*^{p-1}, \qquad \rho \in (0, \pi/2) \\ \varphi_* \ge 0, \ \varphi_*(0) = 1, \ \varphi'_*(0) = 0, \ \varphi_*(\pi/2) = 0. \end{cases}$$

Behavior of the eigenfunction near $\frac{\pi}{2}$ Let's look to the behavior of the solution of (1.4) near $\frac{\pi}{2}$. First, note that if p < 2 then $\varphi'_*(\pi/2) = 0$ implies that $\varphi''_*(\pi/2) = 0$ also. Now, if p > 2 then putting $t := \frac{\pi}{2} - \rho$ and writing $\varphi_*(\rho) = \varphi_*(\frac{\pi}{2} - t) = at^{\alpha} + O(t^{\alpha}), \text{ with } \alpha > 1, \text{ we get}$

$$(a\alpha t^{\alpha-1})^{p-2}\left[(p-1)a\alpha(\alpha-1)t^{\alpha-2}+(n-1)a\alpha t^{\alpha}\right]=-\lambda^*(\alpha t)^{p-1}.$$

Then necessarily, one has $(\alpha-1)(p-2)+\alpha-2=p-1$, i.e. $\alpha=\frac{2p-1}{p-1}>2$. In both cases, p > 2 or p < 2, we have

(1.5)
$$\varphi_*(\pi/2) = \varphi'_*(\pi/2) = \varphi''_*(\pi/2) = 0.$$

2. Some monotony properties

By "first positive eigenvalue" problem it is classically meant: given a manifold \mathcal{M} , find a couple (λ, φ) , λ the least positive possible such that the problem

(2.1)
$$\begin{cases} \Delta_p \varphi = \lambda \varphi |\varphi|^{p-2} & \text{in } \mathcal{M}, \\ \varphi = 0 & \text{on } \partial \mathcal{M}. \end{cases}$$

Aiming to point out some monotony properties, we invert the order: given $\lambda > 0$, find a couple (\mathcal{M}, φ) such that the associated problem admits a solution.

For our purpose, we limit ourselves to geodesic balls, i.e., $\mathcal{M} = B_q(N, \rho)$, where N is the north pole on the unit sphere and $\rho \in (0,\pi)$. The problem can then be formulated as follows: given $\lambda > 0$, find $(\rho_{\lambda}, \varphi_{\lambda})$ so that φ_{λ} is the unique solution, up to the multiplication by a constant, of the problem (2.1) on $B_g(N, \rho_{\lambda})$. This gives directly the following

Proposition 2.1. For all $\lambda > 0$ there exists a unique $\rho_{\lambda} \in (0,\pi)$ such that the problem (2.1) admits a unique solution φ_{λ} on $B_q(N, \rho_{\lambda})$ satisfying $\varphi_{\lambda}(N) = 1$. Moreover, the mapping $\lambda \longmapsto \rho_{\lambda}$ is continuous decreasing and $\lim_{\lambda \to 0} \rho_{\lambda} = \pi$ and $\lim_{\lambda \to \infty} \rho_{\lambda} = 0.$

3. Approximate problem

Fix $\lambda > 0$, $\rho_{\lambda} \in (0, \pi)$ and φ_{λ} solution of the following

Fix
$$\lambda > 0$$
, $\rho_{\lambda} \in (0, \pi)$ and φ_{λ} solution of the following
$$\begin{cases} \varphi_{\lambda} \in C^{2}(0, \rho_{\lambda}), \\ [-\varphi_{\lambda}']^{p-2} \left[(p-1)\varphi_{\lambda}'' + (n-1)\frac{\cos\rho}{\sin\rho}\varphi_{\lambda}' \right] = -\lambda\varphi_{\lambda}^{p-1}, & \rho \in (0, \rho_{\lambda}), \\ \varphi_{\lambda} \geq 0, & \varphi_{\lambda}(0) = 1, & \varphi_{\lambda}'(0) = 0, & \varphi_{\lambda}(\rho_{\lambda}) = 0. \end{cases}$$
In order to study Problem (3.1) we transform it into an initial condition prob

In order to study Problem (3.1) we transform it into an initial condition problem. Since we have a problem at zero, using development into fractional Taylor series, one find that $\varphi(\rho) = 1 - a\rho^{2+\alpha} + O(\rho^{2+\alpha})$, for ρ near zero, where

$$\alpha := \frac{2-p}{p-1}$$
 and $a := \frac{p-1}{p} [\lambda/n]^{\frac{1}{p-1}}$.